Skip to main content

Recent Advances in Breeding for Modified Fatty Acid Profile in Soybean Oil

  • Chapter
  • First Online:
  • 638 Accesses

Abstract

Soybean is an important source of food, feed, and edible oil in the world. It contains about 20% oil and 40-45% protein. Besides saturated fatty acids, the soybean oil contains both monounsaturated and polyunsaturated fatty acid (PUFA). Presence of PUFA, linolenic acid in particular makes soy oil vulnerable to oxidative degradation and rancidity. Hydrogenation enhances storage stability but adds trans-fatty acid and makes soy oil a poor choice for healthy hearts. Conventional and molecular approaches have been employed to genetically alter the fatty acid profile of soybean oil. Quantitative trait loci (QTL) and genes have been characterized in various genotypes and being deployed to manipulate the fatty acid profile as desired. In this article, recent advances and future considerations for fatty acid modification in soybean oil have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alt JL, Fehr WR, Welke GA, Sandu D (2005a) Phenotypic and molecular analysis of oleate content in the mutant soybean line M23. Crop Sci 45:1997–2000

    Article  CAS  Google Scholar 

  • Alt JL, Fehr WR, Welke GA, Shannon JG (2005b) Transgressive segregation for oleate content in three soybean populations. Crop Sci 45:2005–2007

    Article  CAS  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–444

    Article  CAS  Google Scholar 

  • Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Gen Genomics 279:1–10

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bin L, Shengxü F, Fukuan Y, Ying C, Shengrui Z, Fenxia H, Shurong Y, Lianzheng W (2017) Junming sun high-resolution mapping of QTL for fatty acid composition in soybean using specific-locus amplified fragment sequencing. Theor Appl Genet 130:1467–1479

    Article  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  Google Scholar 

  • Brummer EC, Nickell AD, Wilcox JR, Shoemaker RC (1995) Mapping the Fan locus controlling linolenic acid in soybean oil. J Hered 86:245–247

    Article  CAS  Google Scholar 

  • Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney AJ, Staswick P, Clemente T (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  CAS  Google Scholar 

  • Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19:39–46

    Article  CAS  Google Scholar 

  • Chappell AS, Bilyeu KD (2006) A GmFAD3A mutation in the low linolenic acid mutant C1640. Plant Breed 125:535–536

    Article  CAS  Google Scholar 

  • Chi DW, Masatsugu H, Toyoaki A, Akihiro S, Ryo A (2017) Fatty acid composition and distribution in wild soybean (Glycine soja) seeds collected in Japan. Asian J Plant Sci 16(2):52–64. https://doi.org/10.3923/ajps.2017.52.64

    Article  CAS  Google Scholar 

  • Crystal BH, Jason DG (2017) Genotyping-by-sequencing-based investigation of the genetic architecture responsible for a sevenfold increase in soybean seed stearic acid. Genes Genomes Genet 7:299–308

    Google Scholar 

  • Diers BW, Shoemaker RC (1992) Restriction fragment length polymorphism of soybean fatty acid content. J Am Oil Chem Soc 69:1242–1244

    Article  CAS  Google Scholar 

  • Edgar BC, Thomas TE, Howard GD, Anthony JK (2009) Modifying vegetable oils for food and non-food purposes. In: Vollmann J, Rajcan I (eds) Oil crops, handbook of plant breeding, 4th edn. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77594-4_2

    Chapter  Google Scholar 

  • Erickson EA, Wilcox JR, Cavins JF (1988) Inheritance of altered palmitic acid percentage in two soybean mutants. Heredity 79(6):465–468

    Article  CAS  Google Scholar 

  • Fan S, Li B, Yu F, Han F, Yan S, Wang L, Sun J (2015) Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica 206:689–700

    Article  CAS  Google Scholar 

  • Fehr WR (2007) Breeding for modified fatty acid composition in soybean. Crop Sci 47(3):72–87. https://doi.org/10.2135/cropsci2007.04.0004IPBS

    Article  CAS  Google Scholar 

  • Fehr WR, Welke GA, Hammond EG, Duvick DN, Cianzio SR (1992) Inheritance of reduced linolenic acid content in soybean genotypes A16 and A17. Crop Sci 32:903–906

    Article  CAS  Google Scholar 

  • Flores T, Karpova O, Su X, Zheng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of the GmFAD3 gene by siRNA leads to low a-linolenic acids (18:3) of fad3-mutant phenotype in soybean Glycine max (Merr.). Transgenic Res 17:839–850

    Article  CAS  Google Scholar 

  • Graef G, LaVallee BJ, Tenopir P, Tat ME, Schweiger BJ, Kinney AJ, Van Gerpen J, Clemente TE (2009) A high oleic acid and low palmitic acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J 7:411–421

    Article  CAS  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean: establishment of highresolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  Google Scholar 

  • Hammond EG, Fehr WR (1983) Registration of A5 germplasm line of soybean. Crop Sci 23:192

    Google Scholar 

  • Heppard EP, Ki nney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal o-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  Google Scholar 

  • Horejsi TF, Fehr WR, Welke GA, Duvick DN, Hammond EG, Cianzio SR (1994) Genetic control of reduced palmitate content in soybean. Crop Sci 34:331–334

    Article  CAS  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  Google Scholar 

  • Hyten DL, Pantalone VR, Saxton AM, Schmidt ME, Sams CE (2004) Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. J Am Oil Chem Soc 81:1115–1118

    Article  CAS  Google Scholar 

  • Istvan R, Guangyun H, Aron DW (2008) Advances in breeding of seed-quality traits in soybean. J Crop Improv 14(1-2):145–174

    Google Scholar 

  • Iyer VV, Sriram G, Fulton DB, Zhou R, Westgate ME, Shanks JV (2008) Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons. Plant Cell Environ 31:506–517

    Article  CAS  Google Scholar 

  • Jackson SA, Rokhsar D, Stacey G, Shoemaker R, Schmutz J, Grimwood J (2006) Toward a reference sequence of the soybean genome: a multiagency effort. Plant Genome 46:S-55–S-61

    Google Scholar 

  • Jeong DL, Kristin DB, GS J (2007) Genetics and breeding for modified fatty acid profile in soybean seed oil. J Crop Sci Biotechnol 10(4):201–210

    Google Scholar 

  • Kim HJ, Ha B-K, Ha K-S, Chae J-H, Park J-H, Kim M-S, Asekova S, Grover Shannon J, Son C-K, Lee J-D (2015) Comparison of a high oleic acid soybean line to cultivated cultivars for seed yield, protein and oil concentrations. Euphytica 201:285–292. https://doi.org/10.1007/s10681-014-1210-5

    Article  CAS  Google Scholar 

  • Kinney AJ (1996) Development of genetically engineered soybean oils for food applications. J Food Lipids 3 273–292

    Article  CAS  Google Scholar 

  • Kinney AJ, Knowlton S (1997) Designer oils: the high oleic soybean. In: Harander S, Roller S (eds) Genetic engineering for food industry: a strategy for food quality improvement. Blackie Academic, London, pp 193–213

    Google Scholar 

  • Korver O, Katan MB (2006) The elimination of trans fats from spreads: how science helped to turn an industry around. Nutr Rev 64:275–279

    PubMed  Google Scholar 

  • Li YH, Reif JC, Ma YS, Hong HL, Liu ZX, Chang RZ, Qiu LJ (2015) Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genomics 16:841

    Article  Google Scholar 

  • Lichtenstein AH, Matthan NR, Jalbert SM, Resteghini NA, Schaefer EJ, Ausman LM (2006) Novel soybean oils with different fatty acid profiles alter cardiovascular disease risk factors in moderately hyperlipidemic subjects. Am J Clin Nutr 84:497–504

    Article  CAS  Google Scholar 

  • Masum A, Shiming L, Melanie B, Stella KK, Khalid M, Nacer B, David AL, Abdelmajid K (2014) Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. Am J Plant Sci 5:158–167

    Article  Google Scholar 

  • Mazur B, Krebbers E, Tingey S (1999) Gene discovery and product development for grain quality traits. Science 285:372–375

    Article  CAS  Google Scholar 

  • Mikkilineni V, Rocheford TR (2003) Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet 106:1326–1332

    Article  CAS  Google Scholar 

  • Monteros MJ, Burton JW, Boerma HR (2008) Molecular mapping and confirmation of QTLs associated with oleic acid content in N00-3350 soybean. Crop Sci 48:2223–2234

    Article  Google Scholar 

  • Mozaffarian D, Willett WC (2007) Trans fatty acids and cardiovascular risk: a unique cardiometabolic imprint? Curr Atheroscler Rep 9:486–493

    Article  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152:67–73

    Article  CAS  Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  CAS  Google Scholar 

  • Perez-Vich B, Ferna ndez-Martınez JM, Grondona M, Knapp SJ, Berry ST (2002) Stearoyl- ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower. Theor Appl Genet 104:338–349

    Article  CAS  Google Scholar 

  • Primomo VS, Falk DE, Ablett GR, Tanner JW, Rajcan I (2002) Genotype X environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci 42:37–44

    Article  CAS  Google Scholar 

  • Rahman SM, Kinoshita T, Anai T, Takagi Y (2001) Combining ability in loci for high oleic and low linolenic acids in soybean. Crop Sci 41:26–29

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Burton JW, Carter TE Jr, Wilson RF (1998) Genetic variation for modifiers controlling reduced saturated fatty acid content in soybean. Crop Sci 38:303–308

    Article  CAS  Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    Article  CAS  Google Scholar 

  • Reinprecht Y, Luk-Labey SY, Larsen J, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2009) Molecular basis of the low linolenic acid trait on soybean EMS mutant line RG10. Plant Breed 128:253–258

    Article  CAS  Google Scholar 

  • Shoemaker RC, Schlueter JA, Cregan P, Vodkinn L (2003) The status of soybean genomics and its role in the development of soybean biotechnologies. Ag Bio Forum 6(1&2):4–7

    Google Scholar 

  • Spencer MM, Pantalone VR, Meyer EJ, Landau-Ellis D, Hyten DL Jr (2003) Mapping the Fas locus controlling stearic acid contents in soybean. Theor Appl Genet 106:615–619

    Article  CAS  Google Scholar 

  • Stoltzfus DL, Fehr WR, Welke GA, Hammond EG, Cianzio SR (2000a) A fap5 allele for elevated palmiatate in soybean. Crop Sci 40:647–650

    Article  CAS  Google Scholar 

  • Stoltzfus DL, Fehr WR, Welke GA, Hammond EG, Cianzio SR (2000b) A fap7 allele for elevated palmiatate in soybean. Crop Sci 40:1538–1542

    Article  Google Scholar 

  • Takagi Y, Rahman SM (1996) Inheritance of high oleic acid content in the seed oil of soybean mutant M23. Theor Appl Genet 92:179–182

    Article  CAS  Google Scholar 

  • Tang GQ, Novitzky WP, Griffin HC, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433–446

    Article  CAS  Google Scholar 

  • Tom EC, Edgar BC (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2012) Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed 30:1163–1179

    Article  Google Scholar 

  • White HBJ, Quackenbush FW, Probst AH (1961) Occurrence and inheritance of linolenic and linoleic acids in soybean seeds. J Am Oil Chem Soc 38:113–117

    Article  CAS  Google Scholar 

  • Wilcox JR, Cavins JF (1985) Inheritance of low linolenic acid content of the seed oil of a mutant Glycine max. Theor Appl Genet 71:74–78

    Article  CAS  Google Scholar 

  • William H, Andrew C, Benjamin MC, Zachary LD, Anita O, Erin R, Adam R, Thomas S, Alexandre J, Frederic C, Luc M, Daniel FV, Feng Z (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  Google Scholar 

  • Xie D, Han Y, Zeng Y, Chang W, Teng W, Li W (2012) SSR-and SNPrelated QTL underlying linolenic acid and other fatty acid contents in soybean seeds across multiple environments. Mol Breed 30:169–179

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talukdar, A., Shivakumar, M., Chandra, S. (2019). Recent Advances in Breeding for Modified Fatty Acid Profile in Soybean Oil. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_7

Download citation

Publish with us

Policies and ethics