Skip to main content

Genomic Interventions for Biofortification of Food Crops

  • Chapter
  • First Online:
Book cover Quality Breeding in Field Crops

Abstract

Micronutrient deficiencies are reported to affect more than two billion people worldwide. Importantly, people inhabiting rural and semi-urban areas are more vulnerable to these nutritional disorders. In view of the inadequacy of nutrition-specific approaches that rely on changing the food-consumption behaviour, nutrition-sensitive interventions like crop biofortification offer sustainable means to address the problem of malnutrition worldwide. Biofortification enhances nutrient density in crop plants during plant growth through genetic or agronomic practices. Traditional plant breeding techniques and genetic engineering approaches are key to crop biofortification. Here, we summarize recent advances in genomics that have contributed towards the progress of crop biofortification. Rapidly evolving technologies like high-density genotyping assays have accelerated harnessing gains associated with natural variation of mineral contents available in crop wild relatives and landraces. The genetic nature of the mineral composition is being resolved, thus furthering the understanding of trait architecture. Conventional QTL mapping techniques have made significant contribution towards this end. New molecular breeding techniques like genome-wide association study (GWAS) and genomic selection (GS) are opening new avenues for capturing the maximum variation for elemental content, majorly explained by small-effect QTL. The potential of GS in this respect is enhanced several fold with the increasing availability of rapid generation advancement systems and high-throughput elemental profiling platforms. Evidences from latest research involving cutting-edge omics techniques including metabolomics help better elucidate nutrient metabolism in plants. Increasing the efficiency of biofortification breeding could enhance the rate of delivery of nutritionally rich cultivars of food crops, which will be easily accessible to a larger segment of nutrient-deficient people in the most cost-efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid N, Khatoon A, Maqbool A, Irfan M, Bashir A, Asif I, Shahid M, Saeed A, Brinch-Pedersen H, Malik KA (2017) Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 26:109–122

    Article  CAS  PubMed  Google Scholar 

  • Adams ML, Lombi E, Zhao FJ, McGrath SP (2002) Evidence of low selenium concentrations in UK breadmaking wheat grain. J Sci Food Agric 82:1160–1165

    Article  CAS  Google Scholar 

  • Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin a content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri R, Bahraminejad S, Sasani S, Jalali-Honarmand S, Fakhri R (2015) Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. Eur J Agron 67:20–26

    Article  CAS  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB et al (2016) Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One 11:e0149210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badigannavar A, Girish G, Ramachandran V, Ganapathi TR (2016) Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop J 4:61–67

    Article  Google Scholar 

  • Bänziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Wu X, Bhandari D, Astudillo C (2016) Genetic dissection of ICP-detected nutrient accumulation in the whole seed of common bean (Phaseolus vulgaris L.). Front Plant Sci 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 585467:17

    Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Jha UC, Kumar S (2016) Enriching nutrient density in staple crops using modern“-Omics” tools. In: Singh U, Praharaj CS, Singh SS, Singh NP (eds) Biofortification of food crops. Springer, New Delhi, pp 85–103

    Chapter  Google Scholar 

  • Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90:207–215

    Article  CAS  PubMed  Google Scholar 

  • Boonyaves K, Wu TY, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyles RE, Pfeiffer BK, Cooper EA, Rauh BL, Zielinski KJ, Myers MT, Brenton Z, Rooney WL, Kresovich S (2017) Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor Appl Genet 130:697–716

    Article  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Dolors Serret M, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Bio 54:312–320

    Article  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401e403

    Article  Google Scholar 

  • Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A (2017) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crespo-Herrera LA, Velu G, Singh RP (2016) Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol 169:27–35

    Article  CAS  Google Scholar 

  • Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP (2017) QTL mapping of grain Zn and Fe concentrations in two Hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci 8:1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • De Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofertilization of crops to fight hidden hunger in sub-Saharan Africa. Gobal Food Security 12:8–14

    Article  Google Scholar 

  • van der Werf J (2013) Genomic selection in animal breeding programs. In: Gondro C, van der Werf J, Hayes BJ (eds) Genome-wide association studies and genomic prediction. Springer, New York, NY, pp 543–561

    Chapter  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Taran B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:1–10

    Article  CAS  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262

    Article  Google Scholar 

  • Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, Dhillon KS, Sadana US (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab. Sci Total Environ 505:952–961

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Becerra HF, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y, Cakmak I (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171(1):39–52

    Article  CAS  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A, Tutus B, Torun L, Ozturk L, Cakmak I (2011) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  • Gorafi YSA, Ishii T, Kim JS, Elbashir AAE, Tsujimoto H (2016) Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet Resour. https://doi.org/10.1017/S1479262116000265

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, Pace J, Soomro AA, Lübberstedt T, Mi G, Yuan L (2015) Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet 128:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307

    Article  CAS  PubMed  Google Scholar 

  • Gyawali S, Otte ML, Chao S, Jilal A, Jacob DL, Amezrou R, Verma RPS (2017) Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci 77:266–274

    Article  CAS  Google Scholar 

  • Harjes C, Rocheford T, Bai L, Brutnell T, Kandianis C, Sowinski S, Stapleton A, Vallabhaneni R, Williams M, Wurtzel E et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9:787–789

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63:10885–10892

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Iwata M, Taniko K, Monden G, Miyazaki N, Orn C et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12(10):e0187224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J Genet 94:279–286

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan R (1980) Improvement of the nutritional quality of sorghum and pearl millet. Food Nutr Bull 2:11–16

    Article  Google Scholar 

  • Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y (2015) Comparative mapping combined with homology based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet 16:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jittham O, Fu X, Xu J, Chander S, Li J, Yang X (2017) Genetic dissection of carotenoids in maize kernels using high-density single nucleotide polymorphism markers in a recombinant inbred line population. Crop J 5:63–72

    Article  Google Scholar 

  • Johnson AAT et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandianis CB, Stevens R, Liu WP, Palacios N, Montgomery K, Pixley K, White WS, Rocheford T (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2):28724070

    Article  CAS  Google Scholar 

  • Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP et al (2018) Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS One 13:e0192026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kondou Y, Manickavelu A, Komatsu K, Arifi M, Kawashima M, Ishii T, Hattori T, Iwata H, Tsujimoto H, Ban T, Matsui M (2016) Analysis of grain elements and identification of best genotypes for Fe and P in Afghan wheat landraces. Breed Sci 66:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB et al (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One 12:e0174972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang ZH, Li F, Li K, Yang N, Yang Y, Huang D, Liang D, Zhao H, Mao H, Liu J, Qiu W (2014) Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crop Res 156:151–160

    Article  Google Scholar 

  • Liu C, Chen G, Li Y, Peng Y, Zhang A, Hong K et al (2017) Characterization of a major QTL for manganese accumulation in rice grain. Sci Rep 7(1):17704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA, Kochian LV, Glahn RP, Hoekenga OA (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6:e20429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahender A, Anandan A, Pradhan SK, Pandit E (2016) Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. Springerplus 5:2086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallikarjuna MG, Thirunavukkarasu N, Hossain F, Bhat JS, Jha SK, Rathore A, Agrawal PK, Pattanayak A, Reddy SS, Gularia SK, Singh AM, Manjaiah KM, Gupta HS (2015) Stability performance of inductively coupled plasma mass spectrometry-phenotyped kernel minerals concentration and grain yield in maize in different agro-climatic zones. PLoS One 10:e0139067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manickavelu A, Hattori T, Yamaoka S, Yoshimura K, Kondou Y, Onogi A et al (2017) Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One 12:e0169416

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda H, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS et al (2017) A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One 12(3):e0173441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2016) Genomic selection: a paradigm shift in animal breeding. Anim Front 6:6–14

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Bohra A (2018) Non-coding RNAs and plant male sterility: current knowledge and future prospects. Plant Cell Rep 37:177–191

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Marndi BC, Sharma S, Das A (2011) Biochemical characterization of two high protein rice cultivars from Assam rice collections. Oryza 48:171–174

    Google Scholar 

  • Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100:637–640

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Moyano LT, Bonneau JP, Sánchez-Palacios JT, Tohme J, Johnson AAT (2016) Association of increased grain iron and zinc concentrations with agro-morphological traits of biofortified rice. Front Plant Sci 7:1463

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. J Sci Food Agric 97:793–801

    Article  CAS  PubMed  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz Z, Kakar KU, Li XB, Li S, Zhang B, Shou HX, Shu QY (2015) Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J Agric Food Chem 63:8008–8016

    Article  CAS  PubMed  Google Scholar 

  • Neelamraju S, Mallikarjuna Swamy BP, Kaladhar K, Anuradha K, Venkateshwar Rao Y, Batchu AK, Agarwal S, Babu AP, Sudhakar T, Sreenu K, Longvah T, Surekha K, Rao KV, Ashoka Reddy G, Roja TV, Kiranmayi SL, Radhika K, Manorama K, Cheralu C, Viraktamath BC (2012) Increasing iron and zinc in rice grains using deep water rices and wild species – identifying genomic segments and candidate genes. Q Assur Safety Crops Foods 4:138

    Article  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey A, Khan MK, Hakki EE, Thomas G, Hamurcu M, Gezgin S, Gizlenci O, Akkaya MS (2016) Assessment of genetic variability for grain nutrients from diverse regions: potential for wheat improvement. Springerplus 5:1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice. GM Crops Food 3:310–316

    Article  PubMed  Google Scholar 

  • Paul S, Gayen D, Datta SK, Dutta K (2016) Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. J Expt Bot 67:5811–5824

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Hariprasanna K, Mehtre SP, Deshpande SP, Anil G, Das RR, Rathore A, Hash T, Reddy BVS, Kumar AA (2017) Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Front Plant Sci 8:712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova B et al (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311

    Article  CAS  Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaria O, Chen Y, McGrath SP (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384

    Article  CAS  PubMed  Google Scholar 

  • Pu ZE, Yu M, He QY, Chen GY, Wang JR, Liu YX et al (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329

    Article  CAS  Google Scholar 

  • Qin X, Zhang W, Dubcovsky J, Tian L (2012) Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Mol Biol 80:631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Fischer K, Yu S, Dubcovsky J, Tian L (2016) Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains. BMC Plant Biol 16:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raboy V, Dickinson DB, Below FE (1984) Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Sci 24:431–434

    Article  CAS  Google Scholar 

  • Rahman WMM, Zaman EMS, Thavarajah P, Thavarajah D, Siddique KHM (2013) Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): farmers’ field survey and genotype × environment effect. Food Res Int 54:1596–1604

    Article  CAS  Google Scholar 

  • Renuka N, Mathure SV, Zanan RL, Thengane RJ, Nadaf AB (2016) Determination of some minerals and β-carotene contents in aromatic indica rice (Oryza sativa L.) germplasm. Food Chem 191:2–6

    Article  CAS  PubMed  Google Scholar 

  • Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhodes DH, Hoffmann L Jr, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy SC, Sharma BD (2014) Assessment of genetic diversity in rice [Oryza sativa L.] germplasm based on agro-morphology traits and zinc-iron content for crop improvement. Physiol Mol Biol Plants 20:209–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel MT, Alderman H, The Maternal and Child Nutrition Study Group (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551

    Article  PubMed  Google Scholar 

  • Schroeder DG, Brown KH (1994) World health organ nutritional status as a predictor of child survival: summarizing the association and quantifying its global impact. Bull World Health Organ 72:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sing SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:6883

    Article  CAS  Google Scholar 

  • Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A (2017a) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12:e0188296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A (2017b) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil(Lens culinaris subsp. culinaris). PLoS One 12:e0188296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R et al (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet-Loedin IH (2016) Advances in breeding for high grain zinc in rice. Rice (NY) 9:49

    Article  Google Scholar 

  • Terasawa Y, Ito M, Tabiki T, Nagasawa K, Hatta K, Nishio Z (2016) Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed Sci 66:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari C, Wallwork H, Balasubramaniam A, Mishra VK, Govindan V, Stangoulis J, Kumar U, Joshi AK (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570

    Article  CAS  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016a) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016b) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Singh R, Payne T (2011) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J Crop Sci 3:43–48

    Article  Google Scholar 

  • Velu G, Tutus Y, Becerra HFG, Hao Y, Demir L, Kara L, Crespo-Herrera L, Orhan S, Yazici A, Singh R, Cakmak I (2016a) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil 411:81–99

    Article  CAS  Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Sohu VS, Mavi GS (2016b) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Wang P, Wang H, Liu Q, Tian X, Shi Y, Zhang X (2017) QTL mapping of selenium content using a RIL population in wheat. PLoS One 12:e0184351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • WHO (2017) https://www.who.int/nutrition/publications/globaltargets2025_policybrief_anaemia/en/

  • Wirth J et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  CAS  PubMed  Google Scholar 

  • Yamunarani R, Govind G, Ramegowda V, Vokkaliga H, Thammegowda HV, Guligowda SA (2016) Genetic diversity for grain Zn concentration in finger millet genotypes: potential for improving human Zn nutrition. Crop J 4:229–234

    Article  Google Scholar 

  • Yan J, Kandianis C, Harjes C, Bai L, Kim E, Yang X, Skinner D, Fu Z, Mitchell S, Li Q et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

  • Zhai SN, Xia XC, He ZH (2016) Carotenoids in staple cereals: metabolism, regulation, and genetic manipulation. Front Plant Sci 7:1197

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Pinson SRM, Tarpley L, Huang X, Lahner B, Yakubova E et al (2014) Mapping and validation of quantitative trait loci associated with concentration of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu J, Jin T, Huang Y, Chen J, Zhu L, Zhao Y, Guo J (2017a) Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments. Euphytica 213:90

    Article  CAS  Google Scholar 

  • Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D (2017) Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol Biol 93:137–150

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

  • Zhou JF, Huang YQ, Liu ZZ, Chen JT, Zhu LY, Song ZQ, Zhao YF (2010) Genetic analysis and QTL mapping of zinc, iron, copper and manganese contents in maize seed. J Plant Genet Resour 11:593–595

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bohra, A., Jha, U.C., Jha, R., Naik, S.J.S., Maurya, A.K., Patil, P.G. (2019). Genomic Interventions for Biofortification of Food Crops. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_1

Download citation

Publish with us

Policies and ethics