Skip to main content

Breast Imaging and Image-Guided Biopsy Techniques

  • Chapter
  • First Online:
Breast Disease

Abstract

Breast imaging is an essential component of breast cancer diagnosis and guides surgery and treatment options. Imaging techniques, such as mammography, ultrasound (US), and magnetic resonance imaging (MRI), enable the detection of breast cancer at earlier stages. Mammography remains the standard screening examination; however, additional imaging studies are useful in evaluating the breast. US is utilized primarily in the diagnostic setting in order to characterize mammographic or palpable findings and assess axillary lymph nodes. Supplemental screening US may also be useful to increase cancer detection in patients with intermediate risk for developing breast cancer and dense breasts. In addition to mammography, high-risk patients may have supplemental annual screening with MRI or screening ultrasound if they are unable to undergo MRI. MRI is also performed to evaluate the extent of disease, the response to neoadjuvant chemotherapy, and silicone implant integrity. In addition, these imaging modalities are also used to guide percutaneous biopsy, enabling minimally invasive tissue diagnosis. At this time, there is insufficient evidence to support the screening use of investigational imaging modalities, such as nuclear medicine breast imaging and positron emission mammography (PEM). However, these topics are briefly discussed for completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabár L, Vitak B, Chen TH, Yen AM, Cohen A, Tot T, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011;260(3):658–63.

    Article  PubMed  Google Scholar 

  2. Coldman A, Phillips N, Warren L, Kan L. Breast cancer mortality after screening mammography in British Columbia women. Int J Cancer. 2007;120(5):1076–80.

    Article  CAS  PubMed  Google Scholar 

  3. ACR practice guidelines for the performance of screening and diagnostic mammography. Amended 2014 (Resolution 39). www.acr.org

  4. Sickles EA, D’Orsi CJ, Bassett LW. ACR BI-RADS® mammography. In: ACR BI-RADS® Atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  5. Rosenberg RD, Yankaskas BC, Abraham LA, Sickles DA, Lehman CD, Geller BM, et al. Performance benchmarks for screening mammography. Radiology. 2006;241(1):55–66.

    Article  PubMed  Google Scholar 

  6. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, et al. Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353(17):1773–83.

    Article  CAS  PubMed  Google Scholar 

  7. Hendrick RE, Pisano ED, Averbukh A, Moran C, Berns EA, Yaffe MJ, et al. Comparison of acquisition parameters and breast dose in digital mammography and screen-film mammography in the American College of Radiology Imaging Network digital mammographic imaging screening trial. AJR Am J Roentgenol. 2010;194(2):362–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. 2010;257(1):246–53.

    Article  PubMed  Google Scholar 

  9. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–7.

    Article  CAS  PubMed  Google Scholar 

  10. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  11. Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev. 2003;12:332–8.

    Google Scholar 

  12. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995;87:670–5.

    Article  Google Scholar 

  13. Harvey JA, Bovbjerg VE. Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology. 2004;230:29–41.

    Article  PubMed  Google Scholar 

  14. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15:11159–69.

    Article  Google Scholar 

  15. Sala E, Warren R, McCann J, Duffy S, Day N, Luben R. Mammographic parenchymal patterns and mode of detection: implications for the breast screening programme. J Med Screen. 1998;5:207–12.

    Article  CAS  PubMed  Google Scholar 

  16. Van Gils CH, Otten JD, Verbeek AL, Hendriks JH. Mammographic breast density and risk of breast cancer: masking bias or causality? Eur J Epidemiol. 1998;14:315–20.

    Article  PubMed  Google Scholar 

  17. Berg WA. Special topics. In: Berg WB, Yang WT, editors. Diagnostic imaging breast, vol. 8. 2nd ed. Manitoba: Amirsys; 2014. p. 98–100.

    Google Scholar 

  18. Dialani V, Baum J, Mehta TS. Sonographic features of gynecomastia. J Ultrasound Med. 2010;29(4):539–47.

    Article  PubMed  Google Scholar 

  19. Günhan-Bilgen I, Bozkaya H, Ustün E, Memiş A. Male breast disease: clinical, mammographic, and ultrasonographic features. Eur J Radiol. 2002;43(3):246–55.

    Article  PubMed  Google Scholar 

  20. Goss PE, Reid C, Pintilie M, Lim R, Miller N. Male breast carcinoma: a review of 229 patients who presented to the Princess Margaret Hospital during 40 years: 1955–1996. Cancer. 1996;85(3):629–39.

    Article  Google Scholar 

  21. Symmers WS. Carcinoma of breast in trans-sexual individuals after surgical and hormonal interference with the primary and secondary sex characteristics. Br Med J. 1968;2(5597):83–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chantra PK, So GJ, Wollman JS, Bassett LW. Mammography of the male breast. AJR Am J Roentgenol. 1995;164(4):853–8.

    Article  CAS  PubMed  Google Scholar 

  23. Shi AA, Georgian-Smith D, Cornell LD, Rafferty EA, Staffa M, Hughes K, et al. Radiological reasoning: male breast mass with calcifications. AJR Am J Roentgenol. 2005;185(6 Suppl):S205–10.

    Article  PubMed  Google Scholar 

  24. Chen L, Chantra PK, Larsen LH, Barton P, Rohitopakarn M, Zhu EQ, et al. Imaging characteristics of malignant lesions of the male breast. Radiographics. 2006;26(4):993–1006.

    Article  PubMed  Google Scholar 

  25. Adibelli ZH, Oztekin O, Gunhan-Bilgen I, Postaci H, Uslu A, Ilhan E. Imaging characteristics of male breast disease. Breast J. 2010;16(5):510–8.

    Article  PubMed  Google Scholar 

  26. Breast Cancer Screening and Diagnosis. NCCN Guidelines Version 1. 2017. www.nccn.org.

  27. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol. 2010;7(1):18–27.

    Article  PubMed  Google Scholar 

  28. American Cancer Society. Detailed guide: breast cancer. http://www.cancer.org/Cancer/BreastCancer/DetailedGuide/index. Accessed 4 Feb 2013.

  29. Kuhl C, Weigel S, Schrading S, Arand B, Bieling H, König R, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol. 2010;28(9):1450–7.

    Article  PubMed  Google Scholar 

  30. Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007;244(2):356–78.

    Article  PubMed  Google Scholar 

  31. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, ACRIN 6666 Investigators, et al. Detection of breast cancer with addition of annual screening ultrasound or a singles screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berg WA. Screening and management. In: Berg WA, Yang WT, editors. Diagnostic imaging breast. 2nd ed. Manitoba: Amirsys; 2014. p. 9–45.

    Google Scholar 

  33. Loving VA, DeMartini WB, Eby PR, Gutierrez RL, Peacock S, Lehman CD. Targeted ultrasound in women younger than 30 years with focal breast signs or symptoms: outcomes analyses and management implications. Am J Roentgenol. 2010;195:1472–7.

    Article  Google Scholar 

  34. Harper AP, Kelly-Fry E, Noe JS, Bies JR, Jackson VP. Ultrasound in the evaluation of solid breast masses. Radiology. 1983;146(3):731–6.

    Article  CAS  PubMed  Google Scholar 

  35. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berg WA. Screening and management. In: Berg WA, Yang WT, editors. Diagnostic imaging breast. 2nd ed. Manitoba: Amirsys; 2014. p. 9–38.

    Google Scholar 

  37. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated cancer risk. JAMA. 2012;307(13):1394–404.

    Google Scholar 

  38. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265(1):59–69.

    Article  PubMed  Google Scholar 

  39. Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MRI. 2018;39:25–34.

    Article  Google Scholar 

  40. Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol. 2010;20(3):734–42.

    Google Scholar 

  41. Wilczek B, Wilzcek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital-based, high volume, single-center breast cancer screening program. Eur J Radiol. 2016;85(9):1554–63.

    Google Scholar 

  42. Brem RF, Tabar L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight study. Radiology. 2015;274(3):663–73.

    Google Scholar 

  43. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15(3PA):408–14.

    Article  PubMed  Google Scholar 

  44. Berg WA. Screening and management. In: Berg WA, Yang WT, editors. Diagnostic imaging breast, vol. 9. 2nd ed. Manitoba: Amirsys; 2014. p. 44–6.

    Google Scholar 

  45. Yamada T, Mori N, Watanabe M, Kimijima I, Okumoto T, Seiji K, et al. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics. 2010;30(5):1183–98.

    Article  PubMed  Google Scholar 

  46. Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N, Harms S, et al. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology. 2006;238(1):42–53.

    Article  PubMed  Google Scholar 

  47. Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370(9586):485–92.

    Article  PubMed  Google Scholar 

  48. Bluemke DA, Gatsonis CA, Chen MH, DeAngelis GA, DeBruhl N, Harms S, et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA. 2004;292:2735–42.

    Article  CAS  PubMed  Google Scholar 

  49. American College of Radiology practice guideline for the performance of contrast-enhanced Magnetic Resonance Imaging (MRI) of the breast: 2013 http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/MRI_Breast.pdf. Accessed 20 Nov 2013.

  50. de Bresser J, de Vos B, van der Ent F, Hulsewé K. Breast MRI in clinically and mammographically occult breast cancer presenting with an axillary metastasis: a systematic review. Eur J Surg Oncol. 2010;36(2):114–9.

    Article  PubMed  Google Scholar 

  51. Olson JA Jr, Morris EA, Van Zee KJ, Linehan DC, Borgen PI. Magnetic resonance imaging facilitates breast conservation for occult breast cancer. Ann Surg Oncol. 2000;7:411–5.

    Article  PubMed  Google Scholar 

  52. Abe H, Schmidt RA, Shah RN, Shimauchi A, Kulkarni K, Sennett CA, et al. MRI-directed (“Second-Look”) ultrasound examination for breast lesions detected initially on MRI: MR and sonographic findings. Am J Roentgenol. 2010;194(2):370–7.

    Article  Google Scholar 

  53. Meissnitzer M, Dershaw DD, Lee CH, Morris EA. Targeted ultrasound of the breast in women with abnormal MRI findings for whom biopsy has been recommended. Am J Roentgenol. 2009;193(4):1025–9.

    Article  Google Scholar 

  54. Lehman CD, Gastonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356:1295–303.

    Article  CAS  PubMed  Google Scholar 

  55. Boetes C, Mus RD, Holland R, Barentsz JO, Strijk SP, Wobbes T, et al. Breast tumors: comparative accuracy of MR imaging relative to mammography and US for demonstrating extent. Radiology. 1995;197:743–7.

    Article  CAS  PubMed  Google Scholar 

  56. Orel SG, Schnall MD, Powell CM, Hochman MG, Solin LJ, Fowble BL, et al. Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology. 1995;196:115–22.

    Article  CAS  PubMed  Google Scholar 

  57. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR Imaging of the ipsilateral breast in women with percutaneously proven breast cancer. Am J Roentgenol. 2003;180:901–10.

    Article  Google Scholar 

  58. Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, et al. Diagnostic accuracy of mammography, clinical examination, US and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233:830–49.

    Article  PubMed  Google Scholar 

  59. Houssami N, Turner R, Macaskill P, Turnbull LW, McCready DR, Tuttle T, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol. 2014;32(5):392–401.

    Article  PubMed  Google Scholar 

  60. Fischer U, Zachariae O, Baum F, von Heyden D, Funke M, Liersch T. The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer. Eur Radiol. 2004;14(10):1725–31.

    Article  PubMed  Google Scholar 

  61. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomized controlled trial. Lancet. 2010;375(9714):563–71.

    Article  PubMed  Google Scholar 

  62. Hakim CM, Ganott MA, Vogia A, Sumkin JH. Breast imaging for pathologists. In: Dabbs DJ, editor. Breast pathology. Philadelphia: Saunders (Elsevier); 2012. p. 133.

    Google Scholar 

  63. Rosen EL, Blackwell KL, Baker JA, Soo MS, Bentley RC, Yu D, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol. 2003;181(5):1275–82.

    Article  PubMed  Google Scholar 

  64. Yeh E, Slanetz P, Kopans DB, Rafferty E, Georgian-Smith D, Moy L, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol. 2005;184(3):868–77.

    Article  PubMed  Google Scholar 

  65. Lobbes MB, Prevos R, Smidt M, Tjan-Heijnen VC, van Goethem M, Schipper R, et al. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging. 2013;4(2):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee JM, Orel SG, Czerniecki BJ, Solin LJ, Schnall MD. MRI before re excision surgery in patients with breast cancer. AJR Am J Roentgenol. 2004;182:473–80.

    Article  PubMed  Google Scholar 

  67. ACR Committee on Drugs and Contrast Media. Chapter 13: Nephrogenic systemic fibrosis. ACR Manual on Contrast Media. Version 9. 2013:81–9. http://geiselmed.dartmouth.edu/radiology/pdf/ACR_manual.pdf

  68. Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. 2013;269(3):694–700.

    Article  PubMed  Google Scholar 

  69. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population based screening program. Radiology. 2013;267:47–56.

    Article  PubMed  Google Scholar 

  70. Parel BK, Lobbes MB, Lewin J. Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MRI. 2018;39:70–9.

    Article  Google Scholar 

  71. James JR, Pavlicek W, Hanson JA, Boltz TF, Patel BK. Breast radiation dose with CESM compared with 2 D FFDM and 3 D tomosynthesis mammography. AJR Am J Roentgenol. 2017;208(2):362–72.

    Google Scholar 

  72. Fallenberg EM, Droman C, Diekman F, Renz DM, Amer H, Ingold-Heppner B, et al. Contrast-enhanced spectral mammography: does mammography provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Res Treat. 2014;146(2):371–81.

    Google Scholar 

  73. Cheung YC, Lin YC, Wan YK, Yeow KM, Huang PC, Lo YF, et al. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis. Eur Radiol. 2014;24(10):2394–403.

    Google Scholar 

  74. Lewin J. Comparison of contrast-enhanced mammography and contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am. 2018;26(2):259–63.

    Article  PubMed  Google Scholar 

  75. Vreugdenburg TD, Willis CD, Mundy L, Hiller JE. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat. 2013;137(3):665–76.

    Article  PubMed  Google Scholar 

  76. Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435–49.

    Article  PubMed  Google Scholar 

  77. Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(3):450–63.

    Article  PubMed  Google Scholar 

  78. Conners AL, Maxwell RW, Tortorelli CL, Hruska CB, Rhodes DJ, Boughey JC, et al. Gamma camera breast imaging lexicon. AJR Am J Roentgenol. 2012;199(6):W767–74.

    Article  PubMed  Google Scholar 

  79. Kim BS. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: a comparative study with MRI. Ann Nucl Med. 2012;26:131–7.

    Article  PubMed  Google Scholar 

  80. Huppe AI, Mehta AK, Brem RF. Molecular breast imaging: a comprehensive review. Semin Ultrasound CT MRI. 2018;39(1):60–9.

    Article  Google Scholar 

  81. Glass SB, Shah ZA. Clinical utility of positron emission mammography. Proc (Bayl Univ Med Cent). 2013;26(3):314–9.

    Google Scholar 

  82. Narayanan D, Madsen KS, Kalinyak JE, Berg WA. Interpretation of positron emission mammography: feature analysis and rates of malignancy. AJR Am J Roentgenol. 2011;196(4):956–70.

    Article  PubMed  Google Scholar 

  83. Caldarella C, Treglia G, Giordano A. Diagnostic performance of dedicated positron emission mammography using flourin-18-fluorodeoxyglucose in women with suspicious breast lesions: a meta-analysis. Clin Breast Cancer. 2014;14(4):241–8.

    Article  PubMed  Google Scholar 

  84. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Hovanessian Larsen L, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol. 2012;198:219–32.

    Article  PubMed  Google Scholar 

  85. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Hovanessian Larsen L, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258(1):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pisano ED, Fajardo LL, Caudry DJ, Sneige N, Frable WJ, Berg WA, et al. Fine-needle aspiration biopsy of nonpalpable breast lesions in a multicenter clinical trial: results from the radiologic diagnostic oncology group V. Radiology. 2001;219(3):785–92.

    Article  CAS  PubMed  Google Scholar 

  87. Pisano ED, Fajardo LL, Tsimikas J, Sneige N, Frable WJ, Gatsonis CA, et al. Rate of insufficient samples for fine-needle aspiration for nonpalpable breast lesions in a multicenter clinical trial: the Radiologic Diagnostic Oncology Group 5 Study. The RDOG5 investigators. Cancer. 1998;82(4):679–88.

    Article  CAS  PubMed  Google Scholar 

  88. Berg WA. Image-guided breast biopsy and management of high-risk lesions. Radiol Clin N Am. 2004;42(5):935–46.

    Article  PubMed  Google Scholar 

  89. Youk JH, Kim EK, Kim MJ, Oh KK. Sonographically guided 14-gauge core needle biopsy of breast masses: a review of 2,420 cases with long-term follow-up. AJR Am J Roentgenol. 2008;190(1):202–7.

    Article  PubMed  Google Scholar 

  90. Harvey JR, Lim Y, Murphy J, Howe M, Morris J, Goyal A, et al. Safety and feasibility of breast lesion localization using magnetic seeds (Magseed): a multi-center, open label cohort study. Breast Cancer Res Treat. 2018;169:531–6.

    Google Scholar 

  91. Mango VL, Wynn RT, Feldman S, Friedlander L, Desperito E, Patel SN, et al. Beyond wires and seeds: reflector-guided breast lesion localization and excision. Radiology. 2017;284:365–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Ganott M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganott, M., Griffith, B., Rudzinski, S.M. (2019). Breast Imaging and Image-Guided Biopsy Techniques. In: Aydiner, A., Igci, A., Soran, A. (eds) Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-04606-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04606-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04605-7

  • Online ISBN: 978-3-030-04606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics