Skip to main content

General Overview of the Basic Structure and Operation of a Typical Silicon on Insulator Metal–Semiconductor Field Effect Transistor (SOI-MESFET)

  • Chapter
  • First Online:
Book cover Device Physics, Modeling, Technology, and Analysis for Silicon MESFET

Abstract

This chapter states the physics and fundamental concepts related to different types of field effect transistors. The necessities and various strategies related to scaling are explained. A detailed description of the origin and impact of various short-channel effects associated with downscaling and their influence on the normal operation of MOS transistors are described. The different technical solutions presented to resolve the problems caused by short-channel effects are discussed. Finally, the structures and advantages of non-classical devices and their feasibility in the settling of the short-channel effects are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Gupta, N. Gupta, Advanced Semiconducting Materials and Devices (Springer, Berlin, 2016)

    Book  Google Scholar 

  2. J.B. Kuo, K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI) (Springer, Berlin, 2013)

    Google Scholar 

  3. I. Bahl, Fundamentals of RF and Microwave Transistor Amplifiers (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  4. L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, 1996)

    Google Scholar 

  5. M. Golio, RF and Microwave Semiconductor Device Handbook (CRC Press, Boca Raton, 2017)

    Google Scholar 

  6. S. Henzler, Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies (Springer, Berlin, 2006)

    Google Scholar 

  7. S. Saurabh, M.J. Kumar, Fundamentals of Tunnel Field-Effect Transistors (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  8. S.M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design (TMH, New Delhi, 2003)

    Google Scholar 

  9. F. D’Agostino, D. Quercia, Short-channel effects in MOSFETs, 2000. Accessed online http://www0.cs.ucl.ac.uk/staff/d.quercia/projects/vlsi/report.pdf

  10. A.K. Singh, Electronic Devices and Integrated Circuits (PHI Learning Pvt. Ltd., New Delhi, 2011)

    Google Scholar 

  11. L. Wang, Quantum Mechanical Effects on MOSFET Scaling Limit (Citeseer, 2006)

    Google Scholar 

  12. L. Wilson, International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, Washington, 2013)

    Google Scholar 

  13. T. Skotnicki, J.A. Hutchby, T.-J. King, H.-S. Wong, F. Boeuf, The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits Devices Mag. 21, 16–26 (2005)

    Article  Google Scholar 

  14. L. Hyunjin, L. Jongho, S. Hyungcheol, DC and AC characteristics of sub-50-nm MOSFETs with source/drain-to-gate nonoverlapped structure. IEEE Trans. Nanotechnol. 1, 219–225 (2002)

    Article  Google Scholar 

  15. G.G. Shahidi, in 2001 International Symposium on VLSI Technology, Systems, and Applications, Proceedings of Technical Papers. SOI Technology for the GHz Era (IEEE, 2001), pp. 11–14

    Google Scholar 

  16. P. Feng, Design, Modeling and Analysis of Non-classical Field Effect Transistors, 2012

    Google Scholar 

  17. A. Kranti, S. Haldar, R. Gupta, Analytical model for threshold voltage and I–V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET. Microelectron. Eng. 56, 241–259 (2001)

    Article  Google Scholar 

  18. W. Ma, Linearity Analysis of Single and Double-Gate Silicon-On-Insulator Metal-Oxide-Semiconductor-Field-Effect-Transistor (Ohio University, Athens, 2004)

    Google Scholar 

  19. S. Shee, Quantum Analytical Modeling of Ultrathin DMDG SON MOSFET: A Performance Assessment (Jadavpur University, Kolkata, 2014)

    Google Scholar 

  20. J.B. Kuo, S.-C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, Hoboken, 2004)

    Google Scholar 

  21. S. Crisoloveanu, S. Li, Electrical Characterization of SOI Materials and Devices (Kluwer Academic Publishers, Dordrecht, 1995)

    Google Scholar 

  22. P. Jong-Tae, J.P. Colinge, Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices 49, 2222–2229 (2002)

    Article  Google Scholar 

  23. T. Sekigawa, Y. Hayashi, Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid State Electron. 27, 827–828 (1984)

    Article  Google Scholar 

  24. L. Hyung-Kyu, J.G. Fossum, Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET's. IEEE Trans. Electron Devices 30, 1244–1251 (1983)

    Article  Google Scholar 

  25. C. Mallikarjun, K.N. Bhat, Numerical and charge sheet models for thin-film SOI MOSFETs. IEEE Trans. Electron Devices 37, 2039–2051 (1990)

    Article  Google Scholar 

  26. J.-T. Park, J.-P. Colinge, C.H. Diaz, Pi-gate SOI MOSFET. IEEE Electron Device Lett. 22, 405–406 (2001)

    Article  Google Scholar 

  27. H.-W. Gao, T.K. Chiang, in 2013 IEEE 10th International Conference on ASIC (ASICON). A Novel Scaling Theory For Fully-depleted Omega-gate (ΩG) MOSFETs (IEEE, 2013), pp. 1–3

    Google Scholar 

  28. S. Jae Young, C. Woo Young, P.J. Hee, L. Jong Duk, P. Byung-Gook, Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Nanotechnol. 5, 186–191 (2006)

    Article  Google Scholar 

  29. B. Yang, K.D. Buddharaju, S.H.G. Teo, N. Singh, G.Q. Lo, D.L. Kwong, Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 29, 791–794 (2008)

    Article  Google Scholar 

  30. F. Schwierz, J.J. Liou, H. Wong, Nanometer CMOS (Pan Stanford, 2010)

    Google Scholar 

  31. G. Hellings, K. De Meyer, High Mobility and Quantum Well Transistors (Springer, Berlin, 2013)

    Book  Google Scholar 

  32. R. Ismail, M.T. Ahmadi, S. Anwar, Advanced Nanoelectronics (CRC Press, Boca Raton, 2012)

    Google Scholar 

  33. A. Chaudhry, J. Roy, G. Joshi, Nanoscale strained-Si MOSFET physics and modeling approaches: A review. J. Semicond. 31, 104001 (2010)

    Article  Google Scholar 

  34. D. Yuehua, H. Yuan, Q. Liu, K. Daoming, C. Junning, in IEEE Asia Pacific Conference on Circuits and Systems, 2006. APCCAS 2006. Physics-based Modeling and Simulation of Dual Material Gate (DMG) LDMOS (IEEE, 2006), pp. 1500–1503

    Google Scholar 

  35. M.J. Kumar, A. Chaudhry, Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51, 569–574 (2004)

    Article  Google Scholar 

  36. C.W. Mueller, P.H. Robinson, Grown-film silicon transistors on sapphire. Proc. IEEE 52, 1487–1490 (1964)

    Article  Google Scholar 

  37. T. Toyabe, S. Asai, Analytical models of threshold voltage and breakdown voltage of short-channel MOSFET's derived from two-dimensional analysis. IEEE Trans. Electron Devices 26, 453–461 (1979)

    Article  Google Scholar 

  38. E. Sano, R. Kasai, K. Ohwada, H. Ariyoshi, A two-dimensional analysis for MOSFET's fabricated on buried SiO2 layer. IEEE Trans. Electron Devices 27, 2043–2050 (1980)

    Article  Google Scholar 

  39. E.R. Worley, Theory of the fully depleted SOS/MOS transistor. Solid State Electron. 23, 1107–1111 (1980)

    Article  Google Scholar 

  40. Y. Omura, A simple model for short-channel effects of a buried-channel MOSFET on the buried insulator. IEEE Trans. Electron Devices 29, 1749–1755 (1982)

    Article  Google Scholar 

  41. L. Hyung-Kyu, J.G. Fossum, Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET's. IEEE Trans. Electron Devices 30, 1244–1251 (1983)

    Article  Google Scholar 

  42. L. Hyung-Kyu, J.G. Fossum, Current-voltage characteristics of thin-film SOI MOSFET’s in strong inversion. IEEE Trans. Electron Devices 31, 401–408 (1984)

    Article  Google Scholar 

  43. J.P. Colinge, Subthreshold slope of thin-film SOI MOSFET's. IEEE Electron Device Lett. 7, 244–246 (1986)

    Article  Google Scholar 

  44. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, T. Elewa, Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 8, 410–412 (1987)

    Article  Google Scholar 

  45. K.K. Young, Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)

    Article  Google Scholar 

  46. S. Veeraraghavan, J.G. Fossum, Short-channel effects in SOI MOSFETs. IEEE Trans. Electron Devices 36, 522–528 (1989)

    Article  Google Scholar 

  47. H.T. Chen, R.S. Huang, An analytical model for back-gate effects on ultrathin-film SOI MOSFETs. IEEE Electron Device Lett. 12, 433–435 (1991)

    Article  Google Scholar 

  48. R.H. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992)

    Article  Google Scholar 

  49. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, Y. Arimoto, Scaling theory for double-gate SOI MOSFET’s. IEEE Trans. Electron Devices 40, 2326–2329 (1993)

    Article  Google Scholar 

  50. P. Francis, A. Terao, D. Flandre, F. Van de Wiele, Modeling of ultrathin double-gate nMOS/SOI transistors. IEEE Trans. Electron Devices 41, 715–720 (1994)

    Article  Google Scholar 

  51. Y. Tosaka, K. Suzuki, T. Sugii, Scaling-parameter-dependent model for subthreshold swing S in double-gate SOI MOSFET’s. IEEE Electron Device Lett. 15, 466–468 (1994)

    Article  Google Scholar 

  52. K. Suzuki, T. Sugii, Analytical models for n +-p+ double-gate SOI MOSFET’s. IEEE Trans. Electron Devices 42, 1940–1948 (1995)

    Article  Google Scholar 

  53. S.R. Banna, M. Chan, P.K. Ko, C.T. Nguyen, C. Mansun, Threshold voltage model for deep-submicrometer fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 42, 1949–1955 (1995)

    Article  Google Scholar 

  54. W. Long, H. Ou, J.M. Kuo, K.K. Chin, Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46, 865–870 (1999)

    Article  Google Scholar 

  55. K. Suzuki, S. Pidin, Short-channel single-gate SOI MOSFET model. IEEE Trans. Electron Devices 50, 1297–1305 (2003)

    Article  Google Scholar 

  56. A. Chaudhry, M.J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review. IEEE Trans. Device Mater. Reliab. 4, 99–109 (2004)

    Article  Google Scholar 

  57. A. Chaudhry, M.J. Kumar, Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51, 1463–1467 (2004)

    Article  Google Scholar 

  58. W. Ma, S. Kaya, Impact of device physics on DG and SOI MOSFET linearity. Solid State Electron. 48, 1741–1746 (2004)

    Article  Google Scholar 

  59. J.-P. Colinge, Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004)

    Article  Google Scholar 

  60. G.V. Reddy, M.J. Kumar, A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4, 260–268 (2005)

    Article  Google Scholar 

  61. S. Baishya, A. Mallik, C.K. Sarkar, A pseudo two-dimensional subthreshold surface potential model for dual-material gate MOSFETs. IEEE Trans. Electron Devices 54, 2520–2525 (2007)

    Article  Google Scholar 

  62. H.A.E. Hamid, J.R. Guitart, B. Iniguez, Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 54, 1402–1408 (2007)

    Article  Google Scholar 

  63. W. Yang, Y. Zhiping, T. Lilin, Scaling theory for FinFETs based on 3-D effects investigation. IEEE Trans. Electron Devices 54, 1140–1147 (2007)

    Article  Google Scholar 

  64. P. Agarwal, G. Saraswat, M.J. Kumar, Compact surface potential model for FD SOI MOSFET considering substrate depletion region. IEEE Trans. Electron Devices 55, 789–795 (2008)

    Article  Google Scholar 

  65. T.-K. Chiang, A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFET’s. Microelectron. Reliab. 49, 113–119 (2009)

    Article  Google Scholar 

  66. S. Jooyoung, Y. Bo, Y. Yu, T. Yuan, A review on compact modeling of multiple-gate MOSFETs. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1858–1869 (2009)

    Article  MathSciNet  Google Scholar 

  67. R. Ritzenthaler, F. Lime, O. Faynot, S. Cristoloveanu, B. Iñiguez, 3D analytical modelling of subthreshold characteristics in vertical multiple-gate FinFET transistors. Solid State Electron. 65–66, 94–102 (2011)

    Article  Google Scholar 

  68. K. Meel, R. Gopal, D. Bhatnagar, Three-dimensional analytic modelling of front and back gate threshold voltages for small geometry fully depleted SOI MOSFET’s. Solid State Electron. 62, 174–184 (2011)

    Article  Google Scholar 

  69. A. Tsormpatzoglou, D.H. Tassis, C.A. Dimitriadis, G. Ghibaudo, N. Collaert, G. Pananakakis, Analytical threshold voltage model for lightly doped short-channel tri-gate MOSFETs. Solid State Electron. 57, 31–34 (2011)

    Article  Google Scholar 

  70. A. Kloes, M. Schwarz, T. Holtij, MOS3: A new physics-based explicit compact model for lightly doped short-channel triple-gate SOI MOSFETs. IEEE Trans. Electron Devices 59, 349–358 (2012)

    Article  Google Scholar 

  71. P. Vimala, N.B. Balamurugan, New analytical model for nanoscale tri-gate SOI MOSFETs including quantum effects. IEEE J. Electron Devices Soc. 2, 1–7 (2014)

    Article  Google Scholar 

  72. S. Tripathi, V. Narendar, A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattice. Microst. 83, 476–487 (2015)

    Article  Google Scholar 

  73. J.D. Marshall, J.D. Meindl, An analytical two-dimensional model for silicon MESFETs. IEEE Trans. Electron Devices 35, 373–383 (1988)

    Article  Google Scholar 

  74. H. Chin-Shan, W. Ching-Yuan, A 2-D analytic model for the threshold-voltage of fully depleted short gate-length Si-SOI MESFETs. IEEE Trans. Electron Devices 42, 2156–2162 (1995)

    Article  Google Scholar 

  75. J.G. Cao, A simplified 2-D analytic model for the threshold-voltage of fully depleted short gate-length Si-SOI MESFET’s. IEEE Trans. Electron Devices 43, 1314–1315 (1996)

    Article  Google Scholar 

  76. T.K. Chiang, Y.H. Wang, M.P. Houng, Modeling of threshold voltage and subthreshold swing of short-channel SOI MESFET’s. Solid State Electron. 43, 123–129 (1999)

    Article  Google Scholar 

  77. P. Pandey, B.B. Pal, S. Jit, A new 2-D model for the potential distribution and threshold voltage of fully depleted short-channel Si-SOI MESFETs. IEEE Trans. Electron Devices 51, 246–254 (2004)

    Article  Google Scholar 

  78. S. Jit, P. Pandey, A. Kumar, S.K. Gupta, Modified boundary condition at Si–SiO2 interface for modeling of threshold voltage and subthreshold swing of short-channel SOI MESFET’s. Solid State Electron. 49, 141–143 (2005)

    Article  Google Scholar 

  79. S. Jit, P.K. Pandey, P.K. Tiwari, Modeling of the subthreshold current and subthreshold swing of fully depleted short-channel Si–SOI-MESFETs. Solid State Electron. 53, 57–62 (2009)

    Article  Google Scholar 

  80. C.H. Suh, Analytical model for deriving the threshold voltage of a short gate SOI MESFET with vertically non-uniformly doped silicon film. Circuits Devices Syst. IET 4, 525–530 (2010)

    Article  Google Scholar 

  81. P. Hashemi, A. Behnam, E. Fathi, A. Afzali-Kusha, M. El Nokali, 2-D modeling of potential distribution and threshold voltage of short channel fully depleted dual material gate SOI MESFET. Solid State Electron. 49, 1341–1346 (2005)

    Article  Google Scholar 

  82. T.K. Chiang, in 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. The New Analytical Subthreshold Behavior Model For Dual Material Gate (DMG) SOI MESFET (2008), pp. 288–289

    Google Scholar 

  83. N. Lakhdar, F. Djeffal, A two-dimensional analytical model of subthreshold behavior to study the scaling capability of deep submicron double-gate GaN-MESFETs. J. Comput. Electron. 10, 382–387 (2011)

    Article  Google Scholar 

  84. A.A. Orouji, Z. Ramezani, S.M. Sheikholeslami, A novel SOI-MESFET structure with double protruded region for RF and high voltage applications. Mater. Sci. Semicond. Process. 30, 545–553 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amiri, I.S., Mohammadi, H., Hosseinghadiry, M. (2019). General Overview of the Basic Structure and Operation of a Typical Silicon on Insulator Metal–Semiconductor Field Effect Transistor (SOI-MESFET). In: Device Physics, Modeling, Technology, and Analysis for Silicon MESFET. Springer, Cham. https://doi.org/10.1007/978-3-030-04513-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04513-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04512-8

  • Online ISBN: 978-3-030-04513-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics