Skip to main content

Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 24))

Abstract

The rapidly progressing global warming due to large carbon emission originating from increased consumption of fossil fuels has become a leading cause of concern. To slow down global warming and to shift toward a sustainable path, the development of alternative renewable energy sources is inevitable. Hydrogen is one such source which is considered to be green. However, current hydrogen generation methods are both energy intensive and generate CO2 as by-product, and thus, developing efficient green methods is necessary. The generation of hydrogen through water splitting is a straightforward method. The evolution of several less expensive non-noble electrocatalysts in the recent past has fueled research efforts related to electrocatalytic hydrogen evolution. Some of these non-noble catalysts have exhibited excellent electrochemical activity and stability, and their performances have rivaled the bench mark catalyst “platinum.” Unlike Pt, whose prohibitive cost prevents large-scale usage, these catalysts can be produced in an affordable manner to be used in mass scale. This chapter reviews some of the basic catalyst evaluation parameters along with interesting results being achieved using catalysts composed of metal dichalcogenides, carbide, nitrides, and phosphides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambrosi A, Sofer Z, Pumera M (2015) 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chem Commun 51(40):8450–8453

    Article  CAS  Google Scholar 

  • Bai Y, Zhang H, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni 2 P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7(4):1446–1453

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  • Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4(11):3957–3971

    Article  CAS  Google Scholar 

  • Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231

    Article  Google Scholar 

  • Brorson M, Carlsson A, Topsøe H (2007) The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal Today 123(1–4):31–36

    Article  CAS  Google Scholar 

  • Brown D, Mahmood M, Turner A, Hall S, Fogarty P (1982) Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int J Hydrog Energy 7(5):405–410

    Article  CAS  Google Scholar 

  • Brown D, Mahmood M, Man M, Turner A (1984) Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta 29(11):1551–1556

    Article  CAS  Google Scholar 

  • Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8(11):11101–11107

    Article  CAS  Google Scholar 

  • Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27(10):3769–3774

    Article  CAS  Google Scholar 

  • Cammack R, Frey M, Robson R (2015) Hydrogen as a fuel: learning from nature. CRC Press, Boca Raton

    Google Scholar 

  • Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed 51(25):6131–6135

    Article  CAS  Google Scholar 

  • Chen W-F, Wang C-H, Sasaki K, Marinkovic N, Xu W, Muckerman J, Zhu Y, Adzic R (2013a) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci 6(3):943–951

    Article  CAS  Google Scholar 

  • Chen W, Santos EJ, Zhu W, Kaxiras E, Zhang Z (2013b) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 13(2):509–514

    Article  CAS  Google Scholar 

  • Chen WF, Schneider JM, Sasaki K, Wang CH, Schneider J, Iyer S, Iyer S, Zhu Y, Muckerman JT, Fujita E (2014) Tungsten carbide–nitride on graphene nanoplatelets as a durable hydrogen evolution electrocatalyst. ChemSusChem 7(9):2414–2418

    Article  CAS  Google Scholar 

  • Chen Y, Yang K, Jiang B, Li J, Zeng M, Fu L (2017) Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A 5(18):8187–8208

    Article  CAS  Google Scholar 

  • Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53(30):7860–7863

    Article  CAS  Google Scholar 

  • Choi CL, Feng J, Li Y, Wu J, Zak A, Tenne R, Dai H (2013) WS 2 nanoflakes from nanotubes for electrocatalysis. Nano Res 6(12):921–928

    Article  CAS  Google Scholar 

  • Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311

    Article  CAS  Google Scholar 

  • Chung DY, Han JW, Lim D-H, Jo J-H, Yoo SJ, Lee H, Sung Y-E (2015) Structure dependent active sites of Ni x S y as electrocatalysts for hydrogen evolution reaction. Nanoscale 7(12):5157–5163

    Article  CAS  Google Scholar 

  • Chung Y-H, Gupta K, Jang J-H, Park HS, Jang I, Jang JH, Lee Y-K, Lee S-C, Yoo SJ (2016) Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy 26:496–503

    Article  CAS  Google Scholar 

  • Damien D, Anil A, Chatterjee D, Shaijumon M (2017) Direct deposition of MoSe 2 nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution. J Mater Chem A 5(26):13364–13372

    Article  CAS  Google Scholar 

  • Delidovich I, Hausoul PJC, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

    Article  CAS  Google Scholar 

  • Deng S, Zhong Y, Zeng Y, Wang Y, Yao Z, Yang F, Lin S, Wang X, Lu X, Xia X (2017) Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater 29(21). https://doi.org/10.1002/adma.201700748

    Article  CAS  Google Scholar 

  • Di Giovanni C, Wang W-A, Nowak S, Grenèche J-M, Hln L, Mouton L, Giraud M, Cd T (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4(2):681–687

    Article  CAS  Google Scholar 

  • Du H, Liu Q, Cheng N, Asiri AM, Sun X, Li CM (2014) Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. J Mater Chem A 2(36):14812–14816

    Article  CAS  Google Scholar 

  • Du HF, Gu S, Liu RW, Li CM (2015) Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. J Power Sources 278:540–545. https://doi.org/10.1016/j.jpowsour.2014.12.095

    Article  CAS  Google Scholar 

  • Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc 136(28):10053–10061. https://doi.org/10.1021/ja504099w

    Article  CAS  Google Scholar 

  • Fan X, Zhou H, Guo X (2015) WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9(5):5125–5134

    Article  CAS  Google Scholar 

  • Feng LG, Vrubel H, Bensimon M, Hu XL (2014) Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys Chem Chem Phys 16(13):5917–5921. https://doi.org/10.1039/c4cp00482e

    Article  CAS  Google Scholar 

  • Feng L-L, Yu G, Wu Y, Li G-D, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 137(44):14023–14026

    Article  CAS  Google Scholar 

  • Fletcher S (2009) Tafel slopes from first principles. J Solid State Electrochem 13(4):537–549

    Article  CAS  Google Scholar 

  • Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3(2–3):153–160

    Article  CAS  Google Scholar 

  • Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987

    Article  CAS  Google Scholar 

  • Gerischer H (1958) Mechanismus der elektrolytischen Wasserstoffabscheidung und Adsorptionsenergie von atomarem Wasserstoff. Bull Soc Chim Belg 67(7–8):506–527

    CAS  Google Scholar 

  • Gholamvand Z, McAteer D, Backes C, McEvoy N, Harvey A, Berner NC, Hanlon D, Bradley C, Godwin I, Rovetta A (2016) Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe 2 to be the most effective hydrogen evolution catalyst. Nanoscale 8(10):5737–5749

    Article  CAS  Google Scholar 

  • Gołasa K, Grzeszczyk M, Bożek R, Leszczyński P, Wysmołek A, Potemski M, Babiński A (2014) Resonant Raman scattering in MoS2—from bulk to monolayer. Solid State Commun 197:53–56

    Article  CAS  Google Scholar 

  • Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9(1):28–46

    Article  CAS  Google Scholar 

  • Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8(5):5297–5303

    Article  CAS  Google Scholar 

  • Gupta S, Patel N, Miotello A, Kothari DC (2015) Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction. J Power Sources 279:620–625. https://doi.org/10.1016/j.jpowsour.2015.01.009

    Article  CAS  Google Scholar 

  • Han Q, Liu K, Chen J, Wei X (2003) A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int J Hydrog Energy 28(11):1207–1212

    Article  CAS  Google Scholar 

  • Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309

    Article  CAS  Google Scholar 

  • Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014a) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382

    Article  CAS  Google Scholar 

  • Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014b) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129

    Article  CAS  Google Scholar 

  • Huang Y, Lu H, Gu H, Fu J, Mo S, Wei C, Miao Y-E, Liu T (2015) A CNT@ MoSe 2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44):18595–18602

    Article  CAS  Google Scholar 

  • Huang Y, Cui F, Zhao Y, Lian J, Bao J, Liu T, Li H (2018) 3D hierarchical CMF/MoSe 2 composite foam as highly efficient electrocatalyst for hydrogen evolution. Electrochim Acta 263:94–101

    Article  CAS  Google Scholar 

  • Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102

    Article  CAS  Google Scholar 

  • Jian C, Cai Q, Hong W, Li J, Liu W (2018) Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 14(13):e1703798

    Article  CAS  Google Scholar 

  • Jiang P, Liu Q, Ge C, Cui W, Pu Z, Asiri AM, Sun X (2014) CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A 2(35):14634–14640

    Article  CAS  Google Scholar 

  • Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702

    Article  CAS  Google Scholar 

  • Kibsgaard J, Jaramillo TF, Besenbacher F (2014) Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo 3 S 13] 2− clusters. Nat Chem 6(3):248

    Article  CAS  Google Scholar 

  • Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029

    Article  CAS  Google Scholar 

  • Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013a) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558

    Article  CAS  Google Scholar 

  • Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013b) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13(3):1341–1347

    Article  CAS  Google Scholar 

  • Kong DS, Wang HT, Lu ZY, Cui Y (2014) CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 136(13):4897–4900. https://doi.org/10.1021/ja501497n

    Article  CAS  Google Scholar 

  • Lauritsen J, Bollinger M, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen B, Topsøe H, Besenbacher F (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J Catal 221(2):510–522

    Article  CAS  Google Scholar 

  • Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E (2007) Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts. J Catal 249(2):220–233

    Article  CAS  Google Scholar 

  • Laursen AB, Man IC, Trinhammer OL, Rossmeisl J, Dahl S (2011) The Sabatier principle illustrated by catalytic H2O2 decomposition on metal surfaces. J Chem Educ 88(12):1711–1715

    Article  CAS  Google Scholar 

  • Laursen A, Patraju K, Whitaker M, Retuerto M, Sarkar T, Yao N, Ramanujachary K, Greenblatt M, Dismukes G (2015) Nanocrystalline Ni 5 P 4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8(3):1027–1034

    Article  CAS  Google Scholar 

  • Layman KA, Bussell ME (2004) Infrared spectroscopic investigation of thiophene adsorption on silica-supported nickel phosphide catalysts. J Phys Chem B 108(40):15791–15802

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  • Li Q, Cui W, Tian J, Xing Z, Liu Q, Xing W, Asiri AM, Sun X (2015a) N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. ChemSusChem 8(15):2487–2491. https://doi.org/10.1002/cssc.201500398

    Article  CAS  Google Scholar 

  • Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR, Hu P, Zhao HJ, Gu L, Yang HG (2015b) Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun 6:8064

    Article  CAS  Google Scholar 

  • Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F (2016) Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15(1):48

    Article  CAS  Google Scholar 

  • Liang Y, Liu Q, Asiri AM, Sun X, Luo Y (2014) Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal 4(11):4065–4069

    Article  CAS  Google Scholar 

  • Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8(3):2158–2165

    Article  CAS  Google Scholar 

  • Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J Am Chem Soc 127(42):14871–14878

    Article  CAS  Google Scholar 

  • Liu Q, Pu Z, Asiri AM, Sun X (2014a) Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochim Acta 149:324–329

    Article  CAS  Google Scholar 

  • Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014b) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem 126(26):6828–6832

    Article  Google Scholar 

  • Liu R, Gu S, Du H, Li CM (2014c) Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. J Mater Chem A 2(41):17263–17267

    Article  CAS  Google Scholar 

  • Liu Y, Ren L, Zhang Z, Qi X, Li H, Zhong J (2016) 3D binder-free MoSe 2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci Rep-Uk 6:22516

    Article  CAS  Google Scholar 

  • Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Article  CAS  Google Scholar 

  • Lv CC, Peng Z, Zhao YX, Huang ZP, Zhang C (2016) The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. J Mater Chem A 4(4):1454–1460. https://doi.org/10.1039/c5ta08715e

    Article  CAS  Google Scholar 

  • Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS (2015a) Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J Mater Chem A 3(16):8361–8368

    Article  CAS  Google Scholar 

  • Ma RG, Zhou Y, Chen YF, Li PX, Liu Q, Wang JC (2015b) Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew Chem Int Ed 54(49):14723–14727. https://doi.org/10.1002/anie.201506727

    Article  CAS  Google Scholar 

  • Mao S, Wen Z, Ci S, Guo X, Ostrikov KK, Chen J (2015) Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11(4):414–419

    Article  CAS  Google Scholar 

  • Marković N, Grgur B, Ross P (1997) Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 101(27):5405–5413

    Article  Google Scholar 

  • Markovića NM, Sarraf ST, Gasteiger HA, Ross PN (1996) Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc, Faraday Trans 92(20):3719–3725

    Article  Google Scholar 

  • Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W (2016) Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energy Mater 6(6):1–10

    Article  CAS  Google Scholar 

  • Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242

    Article  CAS  Google Scholar 

  • McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, Schaak RE (2014) Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem Commun 50(75):11026–11028

    Article  CAS  Google Scholar 

  • Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42

    Article  CAS  Google Scholar 

  • Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4(10):3878–3888

    Article  CAS  Google Scholar 

  • Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2(7):1262–1267

    Article  CAS  Google Scholar 

  • Min S, Lu G (2012) Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets—the role of graphene. J Phys Chem C 116(48):25415–25424

    Article  CAS  Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776

    Article  CAS  Google Scholar 

  • Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26

    Article  CAS  Google Scholar 

  • Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352

    Article  CAS  Google Scholar 

  • Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT (2017) Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 56(20):5575–5578. https://doi.org/10.1002/anie.201611756

    Article  CAS  Google Scholar 

  • Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063

    Article  CAS  Google Scholar 

  • Pintado S, Goberna-Ferrón S, Escudero-Adán EC, Galán-Mascarós JR (2013) Fast and persistent electrocatalytic water oxidation by Co–Fe Prussian blue coordination polymers. J Am Chem Soc 135(36):13270–13273

    Article  CAS  Google Scholar 

  • Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Article  CAS  Google Scholar 

  • Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534

    Article  Google Scholar 

  • Pu Z, Liu Q, Asiri AM, Sun X (2014a) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl Mater Interfaces 6(24):21874–21879

    Article  CAS  Google Scholar 

  • Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014b) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26(15):4326–4329

    Article  CAS  Google Scholar 

  • Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014c) Ni 2 P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6(19):11031–11034

    Article  CAS  Google Scholar 

  • Pu Z, Amiinu IS, Wang M, Yang Y, Mu S (2016) Semimetallic MoP 2: an active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale 8(16):8500–8504

    Article  CAS  Google Scholar 

  • Qu B, Li CY, Zhu CL, Wang S, Zhang XT, Chen YJ (2016) Growth of MoSe2 nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production. Nanoscale 8(38):16886–16893. https://doi.org/10.1039/c6nr04619c

    Article  CAS  Google Scholar 

  • Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20(1):32–38

    Article  CAS  Google Scholar 

  • Saadi FH, Carim AI, Verlage E, Hemminger JC, Lewis NS, Soriaga MP (2014) CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: electrochemical synthesis, interfacial characterization and performance evaluation. J Phys Chem C 118(50):29294–29300

    Article  CAS  Google Scholar 

  • Santos E, Quaino P, Schmickler W (2012) Theory of electrocatalysis: hydrogen evolution and more. Phys Chem Chem Phys 14(32):11224–11233

    Article  CAS  Google Scholar 

  • Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215(2):208–219

    Article  CAS  Google Scholar 

  • Seo B, Jeong HY, Hong SY, Zak A, Joo SH (2015) Impact of a conductive oxide core in tungsten sulfide-based nanostructures on the hydrogen evolution reaction. Chem Commun 51(39):8334–8337

    Article  CAS  Google Scholar 

  • Shen Y, Li L, Xi JY, Qiu XP (2016a) A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. J Mater Chem A 4(16):5817–5822. https://doi.org/10.1039/c6ta01236a

    Article  CAS  Google Scholar 

  • Shen Y, Ren X, Qi X, Zhou J, Huang Z, Zhong J (2016b) MoS2 nanosheet loaded with TiO2 nanoparticles: an efficient electrocatalyst for hydrogen evolution reaction. J Electrochem Soc 163(13):H1087–H1090

    Article  CAS  Google Scholar 

  • Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575

    Article  CAS  Google Scholar 

  • Shin S, Jin Z, Kwon DH, Bose R, Min Y-S (2015) High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir 31(3):1196–1202

    Article  CAS  Google Scholar 

  • Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep-Uk 5:13801. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  • Shu H, Zhou D, Li F, Cao D, Chen X (2017) Defect engineering in MoSe2 for the hydrogen evolution reaction: from point defects to edges. ACS Appl Mater Interfaces 9(49):42688–42698

    Article  CAS  Google Scholar 

  • Sobczynski A, Yildiz A, Bard AJ, Campion A, Fox MA, Mallouk T, Webber SE, White JM (1988) Tungsten disulfide: a novel hydrogen evolution catalyst for water decomposition. J Phys Chem 92(8):2311–2315

    Article  CAS  Google Scholar 

  • Sobczynski A, Bard A, Campion A, Fox M, Mallouk T, Webber S, White J (1989) Catalytic hydrogen evolution properties of nickel-doped tungsten disulfide. J Phys Chem 93(1):401–403

    Article  CAS  Google Scholar 

  • Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH) 2-Pt interfaces. Science 334(6060):1256–1260

    Article  CAS  Google Scholar 

  • Tan SM, Pumera M (2016) Bottom-up electrosynthesis of highly active tungsten sulfide (WS3–x) films for hydrogen evolution. ACS Appl Mater Interfaces 8(6):3948–3957

    Article  CAS  Google Scholar 

  • Tian J, Liu Q, Asiri AM, Sun X (2014a) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590

    Article  CAS  Google Scholar 

  • Tian J, Liu Q, Liang Y, Xing Z, Asiri AM, Sun X (2014b) FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl Mater Interfaces 6(23):20579–20584

    Article  CAS  Google Scholar 

  • Tian L, Murowchick J, Chen X (2017) Improving the activity of Co x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustain Energy Fuel 1(1):62–68

    Article  CAS  Google Scholar 

  • Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. In: Catalysis. Springer, New York, pp 1–269

    Google Scholar 

  • Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 39(1):163–184

    Article  CAS  Google Scholar 

  • Tsai C, Chan K, Abild-Pedersen F, Nørskov JK (2014) Active edge sites in MoSe 2 and WSe 2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16(26):13156–13164

    Article  CAS  Google Scholar 

  • Tseung A, Sriskandarajah T, Chan H (1985) A method for the inhibition of sulphide stress corrosion cracking in steel-i. electrochemical aspects. Corros Sci 25(6):383–393

    Article  CAS  Google Scholar 

  • Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974

    Article  CAS  Google Scholar 

  • Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227

    Article  CAS  Google Scholar 

  • Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G (2013b) Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat Mater 12(9):850

    Article  CAS  Google Scholar 

  • Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem 124(51):12875–12878

    Article  Google Scholar 

  • Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y (2013a) MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett 13(7):3426–3433

    Article  CAS  Google Scholar 

  • Wang HT, Lu ZY, Xu SC, Kong DS, Cha JJ, Zheng GY, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y (2013b) Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA 110(49):19701–19706. https://doi.org/10.1073/pnas.1316792110

    Article  CAS  Google Scholar 

  • Wang T, Liu L, Zhu Z, Papakonstantinou P, Hu J, Liu H, Li M (2013c) Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ Sci 6(2):625–633

    Article  CAS  Google Scholar 

  • Wang X, Feng H, Wu Y, Jiao L (2013d) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135(14):5304–5307

    Article  CAS  Google Scholar 

  • Wang JM, Yang WR, Liu JQ (2016) CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J Mater Chem A 4(13):4686–4690. https://doi.org/10.1039/c6ta00596a

    Article  CAS  Google Scholar 

  • Wang H, Xie Y, Cao H, Li Y, Li L, Xu Z, Wang X, Xiong N, Pan K (2017) Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (0 0 1) facets: efficient electrocatalyst for the hydrogen evolution reaction. ChemSusChem 10(24):4899–4908

    Article  CAS  Google Scholar 

  • Wu Z, Fang B, Bonakdarpour A, Sun A, Wilkinson DP, Wang D (2012) WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ 125:59–66

    Article  CAS  Google Scholar 

  • Wu Z, Fang B, Wang Z, Wang C, Liu Z, Liu F, Wang W, Alfantazi A, Wang D, Wilkinson DP (2013) MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal 3(9):2101–2107

    Article  CAS  Google Scholar 

  • Wu T, Pi M, Zhang D, Chen S (2016) Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. J Power Sources 328:551–557

    Article  CAS  Google Scholar 

  • Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629

    Article  CAS  Google Scholar 

  • Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888

    Article  CAS  Google Scholar 

  • Xing Z, Liu Q, Asiri AM, Sun X (2014) High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal 5(1):145–149

    Article  CAS  Google Scholar 

  • Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49(59):6656–6658

    Article  CAS  Google Scholar 

  • Xu S, Lei Z, Wu P (2015) Facile preparation of 3D MoS 2/MoSe 2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(31):16337–16347

    Article  CAS  Google Scholar 

  • Yan Y, Ge X, Liu Z, Wang J-Y, Lee J-M, Wang X (2013) Facile synthesis of low crystalline MoS 2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5(17):7768–7771

    Article  CAS  Google Scholar 

  • Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705

    Article  CAS  Google Scholar 

  • Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H (2015) Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 54(21):6325–6329

    Article  CAS  Google Scholar 

  • Yan L, Dai P, Wang Y, Gu X, Li L, Cao L, Zhao X (2017) In situ synthesis strategy for hierarchically porous Ni2P polyhedrons from MOFs templates with enhanced electrochemical properties for hydrogen evolution. ACS Appl Mater Interfaces 9(13):11642–11650

    Article  CAS  Google Scholar 

  • Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, Shin HS (2013) Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed 52(51):13751–13754

    Article  CAS  Google Scholar 

  • Yang HC, Zhang YJ, Hu F, Wang QB (2015a) Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett 15(11):7616–7620. https://doi.org/10.1021/acs.nanolett.5b03446

    Article  CAS  Google Scholar 

  • Yang X, Lu A-Y, Zhu Y, Hedhili MN, Min S, Huang K-W, Han Y, Li L-J (2015b) CoP nanosheet assembly grown on carbon cloth: a highly efficient electrocatalyst for hydrogen generation. Nano Energy 15:634–641. https://doi.org/10.1016/j.nanoen.2015.05.026

    Article  CAS  Google Scholar 

  • Yang XL, Lu AY, Zhu Y, Min SX, Hedhili MN, Han Y, Huang KW, Li LJ (2015c) Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale 7(25):10974–10981. https://doi.org/10.1039/c5nr02375k

    Article  CAS  Google Scholar 

  • Yang Y, Fei H, Ruan G, Tour JM (2015d) Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv Mater 27(20):3175–3180

    Article  CAS  Google Scholar 

  • Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P (2017) Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater 29(28). https://doi.org/10.1002/adma.201700311

    Article  CAS  Google Scholar 

  • Yu Y, Huang S-Y, Li Y, Steinmann SN, Yang W, Cao L (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14(2):553–558

    Article  CAS  Google Scholar 

  • Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962

    Article  CAS  Google Scholar 

  • Zeng M, Wang H, Zhao C, Wei J, Qi K, Wang W, Bai X (2016) Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 8(4):708–712

    Article  CAS  Google Scholar 

  • Zeradjanin AR, Grote JP, Polymeros G, Mayrhofer KJ (2016) A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28(10):2256–2269

    Article  CAS  Google Scholar 

  • Zhang Z, Lu B, Hao J, Yang W, Tang J (2014) FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem Commun 50(78):11554–11557

    Article  CAS  Google Scholar 

  • Zhang ZY, Li WY, Yuen MF, Ng TW, Tang YB, Lee CS, Chen XF, Zhang WJ (2015) Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 18:196–204. https://doi.org/10.1016/j.nanoen.2015.10.014

    Article  CAS  Google Scholar 

  • Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri AM (2016a) Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. J Mater Chem A 4(26):10114–10117

    Article  CAS  Google Scholar 

  • Zhou HQ, Yu F, Sun JY, He R, Wang YM, Guo CF, Wang F, Lan YC, Ren ZF, Chen S (2016b) Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. J Mater Chem A 4(24):9472–9476. https://doi.org/10.1039/c6ta02876d

    Article  CAS  Google Scholar 

  • Zhou HQ, Yu F, Liu YY, Sun JY, Zhu ZA, He R, Bao JM, Goddard WA, Chen S, Ren ZF (2017) Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ Sci 10(6):1487–1492. https://doi.org/10.1039/c7ee00802c

    Article  CAS  Google Scholar 

  • Zhu YP, Liu YP, Ren TZ, Yuan ZY (2015) Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater 25(47):7337–7347

    Article  CAS  Google Scholar 

  • Zhu WX, Tang C, Liu DN, Wang JL, Asiri AM, Sun XP (2016) A self-standing nanoporous MoP2 nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J Mater Chem A 4(19):7169–7173. https://doi.org/10.1039/c6ta01328g

    Article  CAS  Google Scholar 

  • Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    Article  CAS  Google Scholar 

  • Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem 126(17):4461–4465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Thiyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiyagarajan, N., Joseph, N.A., Gopinathan, M. (2019). Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction. In: Rajendran, S., Naushad, M., Balakumar, S. (eds) Nanostructured Materials for Energy Related Applications. Environmental Chemistry for a Sustainable World, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-04500-5_4

Download citation

Publish with us

Policies and ethics