Skip to main content

Recent Trends in Nanomaterials for Sustainable Energy

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 24))

Abstract

The consumption of energy in any form is inevitable in the present era, and is growing. Currently, most energy resources come from fossil fuels. However, the alarming situation of global warming has attracted increasing attention to the development of renewable energy resources. The future of energy is completely in the hands of green energy resources. Hydrogen fuel cells are one of the focus areas of green energy generation with zero emission. Energy storage must be low cost, be small in size, and have a higher storage capacity. Developments in the field of nanoscience and nanotechnology are creating a more reliable pathway toward energy generation and storage. The unique characteristic of nanomaterials can control the dimensionality of materials (e.g., zero-, one-, two-, and three-dimensional), morphology, and composite formation, through which the desired electrical, electronic, and storage properties of materials can be achieved. This chapter provides a brief outline of the current state of energy and recent developments in fuel cells, batteries, and supercapacitors with the aid of nanotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev 11(4):179–209

    Article  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2011) Nanostructured materials for advanced energy conversion and storage devices. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group. World Scientific, Singapore, pp 148–159

    Google Scholar 

  • Bagotsky VS, Skundin AM, Volfkovich YM (2015) Electrochemical power sources: batteries, fuel cells, and supercapacitors. Wiley, Hoboken

    Google Scholar 

  • Baker FS, Miller CE, Repik AJ, Tolles ED (1992) Activated carbon. In: Kirk-Othmer (ed) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Bayer T, Bishop S, Nishihara M, Sasaki K, Lyth S (2014) Characterization of a graphene oxide membrane fuel cell. J Power Sources 272:239–247

    Article  CAS  Google Scholar 

  • Bowman WJ, Kelly MN, Rohrer GS, Hernandez CA, Crozier PA (2017) Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration. Nanoscale 9(44):17293–17302

    Article  CAS  Google Scholar 

  • Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1(9):2941–2954

    Article  CAS  Google Scholar 

  • Cooney DO (1980) Activated charcoal: antidotal and other medical uses, vol 9. Marcel Dekker Incorporated, New York

    Google Scholar 

  • Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40(34):11094–11111

    Article  CAS  Google Scholar 

  • Dullien S (2010) The financial and economic crisis of 2008–2009 and developing countries. UN.

    Google Scholar 

  • Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  • Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrog Energy 42:25143

    Article  CAS  Google Scholar 

  • Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29

    Article  CAS  Google Scholar 

  • Fan L, Zhu B, Su P-C, He C (2018) Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45:148–176. https://doi.org/10.1016/j.nanoen.2017.12.044

    Article  CAS  Google Scholar 

  • Forouzan MM, Wray M, Robertson L, Wheeler DR (2017) Tortuosity of composite porous electrodes with various conductive additives in an alkaline system. J Electrochem Soc 164(13):A3117–A3130

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Article  CAS  Google Scholar 

  • Gao Y, Gao X, Zhang X (2017) The 2 C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations framework convention on climate change to the Paris agreement. Engineering 3(2):272–278

    Article  Google Scholar 

  • Gokay B (2009) The 2008 world economic crisis: global shifts and faultlines. Centre for Research on Globalization 15 (1)

    Google Scholar 

  • Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sust Energ Rev 13(6–7):1513–1522

    Article  Google Scholar 

  • Harman PM, Harman PM (1982) Energy, force and matter: the conceptual development of nineteenth-century physics. Cambridge University Press, Melbourne

    Book  Google Scholar 

  • Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energ Rev 57:850–866

    Article  CAS  Google Scholar 

  • Hwang B-U, Lee J-H, Trung TQ, Roh E, Kim D-I, Kim S-W, Lee N-E (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9):8801–8810

    Article  CAS  Google Scholar 

  • Ismail AA, Bahnemann DW (2014) Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 128:85–101

    Article  CAS  Google Scholar 

  • Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 6(16):1502159

    Article  Google Scholar 

  • Jian X, Liu S, Gao Y, Tian W, Jiang Z, Xiao X, Tang H, Yin L (2016) Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J Electr Eng 4:75–87

    Google Scholar 

  • Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrog Energy 35(13):7087–7097

    Article  CAS  Google Scholar 

  • Joh DW, Park JH, Kim D, Wachsman ED, Lee KT (2017) Functionally graded bismuth oxide/zirconia bilayer electrolytes for high-performance intermediate-temperature solid oxide fuel cells (IT-SOFCs). ACS Appl Mater Interfaces 9(10):8443–8449

    Article  CAS  Google Scholar 

  • Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47(14):2653–2656

    Article  CAS  Google Scholar 

  • Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2(1):37–54

    Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Article  Google Scholar 

  • Lahiri K, Dey S, Panigrahi D (2002) Raghunathan a battery-driven system design: a new frontier in low power design. In: Proceedings of the 2002 Asia and South Pacific design automation conference. IEEE Computer Society, p 261

    Google Scholar 

  • Lee H, Cho MS, Kim IH, Do Nam J, Lee Y (2010) RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met 160(9–10):1055–1059

    Article  CAS  Google Scholar 

  • Li X (2018) Principles of fuel cells. CRC Press, London

    Google Scholar 

  • Lincot D (2017) The new paradigm of photovoltaics: from powering satellites to powering humanity. Comptes Rendus Physique 18(7–8):381–390

    Article  CAS  Google Scholar 

  • Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5):294–302. https://doi.org/10.1002/fuce.200800034

    Article  CAS  Google Scholar 

  • Lokhande V, Lokhande A, Lokhande C, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403

    Article  CAS  Google Scholar 

  • Lu W, Qu L, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189(2):1270–1277

    Article  CAS  Google Scholar 

  • Maitra A, Das AK, Karan SK, Paria S, Bera R, Khatua BB (2017) A mesoporous high-performance supercapacitor electrode based on polypyrrole wrapped Iron oxide decorated nanostructured cobalt vanadium oxide hydrate with enhanced electrochemical capacitance. Ind Eng Chem Res 56(9):2444–2457. https://doi.org/10.1021/acs.iecr.6b04449

    Article  CAS  Google Scholar 

  • Martínez-Huerta M, Lázaro M (2017) Electrocatalysts for low temperature fuel cells. Catal Today 285:3–12

    Article  Google Scholar 

  • Moreno NG, Molina MC, Gervasio D, Robles JFP (2015) Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renew Sust Energ Rev 52:897–906

    Article  Google Scholar 

  • Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425. https://doi.org/10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  • O’hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. Wiley, Hoboken

    Book  Google Scholar 

  • Pandey RP, Shukla G, Manohar M, Shahi VK (2017) Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: an overview. Adv Colloid Interf Sci 240:15–30

    Article  CAS  Google Scholar 

  • Park K-W, Ahn H-J, Sung Y-E (2002) All-solid-state supercapacitor using a Nafion® polymer membrane and its hybridization with a direct methanol fuel cell. J Power Sources 109(2):500–506

    Article  CAS  Google Scholar 

  • Pergolesi D, Roddatis V, Fabbri E, Schneider CW, Lippert T, Traversa E, Kilner JA (2015) Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering. Sci Technol Adv Mater 16(1):015001

    Article  Google Scholar 

  • Qu Y, Zhou W, Jiang L, Fu H (2013) Novel heterogeneous CdS nanoparticles/NiTiO 3 nanorods with enhanced visible-light-driven photocatalytic activity. RSC Adv 3(40):18305–18310

    Article  CAS  Google Scholar 

  • Quaschning V (2016) Understanding renewable energy systems. Routledge, London

    Book  Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta V, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33(1):91–98

    Article  CAS  Google Scholar 

  • Shaari N, Kamarudin S (2017) Graphene in electrocatalyst and proton conducting membrane in fuel cell applications: an overview. Renew Sust Energ Rev 69:862–870

    Article  CAS  Google Scholar 

  • Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853

    Article  CAS  Google Scholar 

  • Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sust Energ Rev 43:1151–1158

    Article  CAS  Google Scholar 

  • Smil V (2017) Energy: a beginner’s guide. Oneworld Publications, Oxford

    Google Scholar 

  • Stewart L (2009) Tungsten trioxide and titanium dioxide photocatalytic degradations of quinoline. Iowa State University, Ames

    Book  Google Scholar 

  • Thomas JP, Qidwai MA (2005) The design and application of multifunctional structure-battery materials systems. JOM 57(3):18–24

    Article  CAS  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  • Wachsman ED, Marlowe CA, Lee KT (2012) Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ Sci 5(2):5498–5509. https://doi.org/10.1039/C1EE02445K

    Article  Google Scholar 

  • Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452

    Article  Google Scholar 

  • Wang Y, Guo J, Wang T, Shao J, Wang D, Yang Y-W (2015) Mesoporous transition metal oxides for supercapacitors. Nano 5(4):1667–1689

    CAS  Google Scholar 

  • Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4):552–565. https://doi.org/10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  • Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721

    Article  CAS  Google Scholar 

  • World Bank Group (2014) World development indicators 2014. World Bank Publications, Washington, DC

    Book  Google Scholar 

  • www.iea.org. https://www.iea.org/weo2017/

  • www.worldbank.org. https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS?end=2015&start=1960&type=shaded&view=chart

  • www.world-nuclear.org. http://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx

  • Xu Z-L, Kim J-K, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84

    Article  CAS  Google Scholar 

  • Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

    Article  CAS  Google Scholar 

  • Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25(24):3302–3306

    Article  CAS  Google Scholar 

  • Yuan L, Lu X-H, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661

    Article  Google Scholar 

  • Zhang Y-C, You Y, Xin S, Yin Y-X, Zhang J, Wang P, X-S Z, Cao F-F, Guo Y-G (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors, D. Durgalakshmi, gratefully acknowledges DST-INSPIRE Faculty Fellowship under the sanction DST/INSPIRE/04/2016/000845 for their funding. R. Saravanan gratefully acknowledges financial support from the SERC (CONICYT/FONDAP/15110019), FONDECYT, Government of Chile (Project No.: 11170414), and the School of Mechanical Engineering (EUDIM), Universidad de Tarapacá, Arica, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgalakshmi D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D, D., Rajendran, S., Naushad, M. (2019). Recent Trends in Nanomaterials for Sustainable Energy. In: Rajendran, S., Naushad, M., Balakumar, S. (eds) Nanostructured Materials for Energy Related Applications. Environmental Chemistry for a Sustainable World, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-04500-5_1

Download citation

Publish with us

Policies and ethics