Skip to main content

Ocular Complications of Targeted Therapy

  • Chapter
  • First Online:
Clinical Ophthalmic Oncology

Abstract

The field of oncology is a rapidly enhancing one, with transition from traditional cytotoxic chemotherapeutic agents to molecularly targeted therapies for the treatment of a variety of cancers. Novel targeted therapies are selected and designed through cellular signaling pathways necessary for growth and survival of neoplastic cells to provide maximal antitumor effect with minimal alteration of normal cellular function. However, the complexity of cellular pathways proves difficult to design therapeutic agents that do not overlap with the physiologic activities of normal human cellular function. As novel molecularly targeted therapies continue to emerge in the clinical setting, defining prevalence and characteristics of their side effects becomes important for the ophthalmologist to recognize and effectively manage in this patient population when presented with ocular complaints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol. 2012;6(2):155–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Myskowski PL, Halpern AC. Skin reactions to the new biologic anticancer drugs. Curr Opin Support Palliat Care. 2009;3(4):294–9.

    Article  PubMed  Google Scholar 

  3. Hedhli N, Russell KS. Cardiotoxicity of molecularly targeted agents. Curr Cardiol Rev. 2011;7(4):221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  5. Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289(5486):1938–42.

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher JA. Role of KIT and platelet-derived growth factor receptors as oncoproteins. Semin Oncol. 2004;31(2 Suppl 6):4–11. Review.

    Article  CAS  PubMed  Google Scholar 

  7. Heuchel R, Berg A, Tallquist M, et al. Platelet-derived growth factor B receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3kinase signaling. Proc Natl Acad Sci U S A. 1999;96:11410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Demetri G, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  CAS  PubMed  Google Scholar 

  9. Fraunfelder FW, Solomon J, Druker BJ, et al. Ocular side effects associated with imatinib mesylate (Gleevec). J Ocul Pharmacol Ther. 2003;19:371–5.

    Article  CAS  PubMed  Google Scholar 

  10. Esmaeli B, Prieto VG, Butler CE, et al. Severe periorbital edema secondary to STI571 (Gleevec). Cancer. 2002;95:881.

    Article  PubMed  Google Scholar 

  11. Esmaeli B, Diba R, Ahmadi MA, et al. Periorbital Oedema and epiphora as ocular side effects of imatinib Mesylate (Gleevec). Eye (Lond). 2004;18(7):760–2.

    Article  CAS  Google Scholar 

  12. Breccia M, Gentilini F, Cannella L, et al. Ocular side effects in chronic myeloid leukemia patients treated with imatinib. Leuk Res. 2008;32(7):1022.

    Article  CAS  PubMed  Google Scholar 

  13. Radaelli F, Vener C, Ripamonti F, et al. Conjunctival hemorrhagic events associated with imatinib mesylate. Int J Hematol. 2007;86:390.

    Article  PubMed  Google Scholar 

  14. Kitzmann AS, Baratz KH, Mohney BG, et al. Histologic studies of the intraocular toxicity of imatinib mesylate in rabbits. Eye (Lond). 2008;22(5):712–4.

    Article  CAS  Google Scholar 

  15. Gulati AP, Saif MW. Retinal neovascularization and hemorrhage associated with the use of imatinib (Gleevec(®)) in a patient being treated for gastrointestinal stromal tumor (GIST). Anticancer Res. 2012;32(4):1375–7.

    CAS  PubMed  Google Scholar 

  16. Masood I, Negi A, Dua HS. Imatinib as a cause of cystoid macular edema following uneventful phacoemulsification surgery. J Cataract Refract Surg. 2005;31:2427–8.

    Article  PubMed  Google Scholar 

  17. Kwon SI, Lee DH, Kim YJ. Optic disc edema as a possible complication of Imatinib mesylate (Gleevec). Jpn J Ophthalmol. 2008;52(4):331–3.

    Article  PubMed  Google Scholar 

  18. Babu KG, Attili VSS, Bapsy PP, et al. Imatinib-induced optic neuritis in a patient of chronic myeloid leukemia. Int Ophthalmol. 2007;27:43–4.

    Article  Google Scholar 

  19. Christoforidis JB, DeAngelo DJ, D’Amico DJ. Resolution of leukemic retinopathy following treatment with imatinib mesylate for chronic myelogenous leukemia. Am J Ophthalmol. 2003;135:398.

    Article  CAS  PubMed  Google Scholar 

  20. DeLuca C, Shenouda-Awad N, Haskes C, et al. Imatinib mesylate (Gleevec) induced unilateral optic disc edema. Optom Vis Sci. 2012;89:e16.

    Article  PubMed  Google Scholar 

  21. Georgalas I, Pavesio C, Ezra E. Bilateral cystoid macular edema in a patient with chronic myeloid leukaemia under treatment with imatinib mesylate: report of an unusual side effect. Graefes Arch Clin Exp Ophthalmol. 2007;245:1585.

    Article  PubMed  Google Scholar 

  22. Kusumi E, Arakawa A, Kami M, et al. Visual disturbance due to retinal edema as a complication of imatinib. Leukemia. 2004;18:1138.

    Article  CAS  PubMed  Google Scholar 

  23. Govind Babu K, Attili VS, Bapsy PP, et al. Imatinib-induced optic neuritis in a patient of chronic myeloid leukemia. Int Ophthalmol. 2007;27:43.

    Article  CAS  PubMed  Google Scholar 

  24. Ahn J, Wee WR, Lee JH, et al. Vortex keratopathy in a patient receiving vandetanib for non-small cell lung cancer. Korean J Ophthalmol. 2011;25:355.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yeh S, Fine HA, Smith JA. Corneal verticillata after dual anti-epidermal growth factor receptor and anti-vascular endothelial growth factor receptor 2 therapy (vandetanib) for anaplastic astrocytoma. Cornea. 2009;28:699.

    Article  PubMed  Google Scholar 

  26. Bajel A, Bassili S, Seymour JF. Safe treatment of a patient with CML using dasatinib after prior retinal oedema due to imatinib. Leuk Res. 2008;32(11):1789–90.

    Article  CAS  PubMed  Google Scholar 

  27. Cho JH, Kim KM, Kwon M, et al. Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Investig New Drugs. 2012;30:2008.

    Article  CAS  Google Scholar 

  28. Maurizot A, Beressi JP, Manéglier B, et al. Rapid clinical improvement of peripheral artery occlusive disease symptoms after nilotinib discontinuation despite persisting vascular occlusion. Blood Cancer J. 2014;4:e247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borkar DS, Lacouture ME, Basti S. Spectrum of ocular toxicities from epidermal growth factor receptor inhibitors and their intermediate-term follow-up: a five-year review. Support Care Cancer. 2013;21(4):1167–74.

    Article  PubMed  Google Scholar 

  30. Foerster CG, Cursiefen C, Kruse FE. Persisting corneal erosion under cetuximab (Erbitux) treatment (epidermal growth factor receptor antibody). Cornea. 2008;27:612.

    Article  PubMed  Google Scholar 

  31. Johnson KS, Levin F, Chu DS. Persistent corneal epithelial defect associated with erlotinib treatment. Cornea. 2009;28:706.

    Article  PubMed  Google Scholar 

  32. Cohen PR, Escudier SM, Kurzrock R. Cetuximab-associated elongation of the eyelashes: case report and review of eyelash trichomegaly secondary to epidermal growth factor receptor inhibitors. Am J Clin Dermatol. 2011;12:63.

    Article  PubMed  Google Scholar 

  33. Bouché O, Brixi-Benmansour H, Bertin A, et al. Trichomegaly of the eyelashes following treatment with cetuximab. Ann Oncol. 2005;16:1711.

    Article  PubMed  Google Scholar 

  34. Melichar B, Nemcová I. Eye complications of cetuximab therapy. Eur J Cancer Care (Engl). 2007;16:439.

    Article  CAS  Google Scholar 

  35. Vaccaro M, Pollicino A, Barbuzza O, et al. Trichomegaly of the eyelashes following treatment with cetuximab. Clin Exp Dermatol. 2009;34:402.

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez NA, Ascaso FJ. Trichomegaly and poliosis of the eyelashes during cetuximab treatment of metastatic colorectal cancer. J Clin Oncol. 2011;29:e532.

    Article  PubMed  Google Scholar 

  37. Roé E, García Muret MP, Marcuello E, et al. Description and management of cutaneous side effects during cetuximab or erlotinib treatments: a prospective study of 30 patients. J Am Acad Dermatol. 2006;55:429.

    Article  PubMed  Google Scholar 

  38. Lane K, Goldstein SM. Erlotinib-associated trichomegaly. Ophthal Plast Reconstr Surg. 2007;23:65–6.

    Article  PubMed  Google Scholar 

  39. Dranko S, Kinney C, Ramanathan RK. Ocular toxicity related to cetuximab monotherapy in patients with colorectal cancer. Clin Colorectal Cancer. 2006;6:224.

    Article  PubMed  Google Scholar 

  40. Jazayeri F, Malhotra R. A case of acquired trichomegaly following treatment with erlotinib. BMJ Case Rep. 2009;2009:bcr01.2009.1473.

    Google Scholar 

  41. Garibaldi DC, Adler RA. Cicatricial ectropion associated with treatment of metastatic colorectal cancer with cetuximab. Ophthal Plast Reconstr Surg. 2007;23:62.

    Article  PubMed  Google Scholar 

  42. Zhang G, Basti S, Jampol LM. Acquired trichomegaly and symptomatic external ocular changes in patients receiving epidermal growth factor receptor inhibitors: case reports and a review of literature. Cornea. 2007;26(7):858–60.

    Article  PubMed  Google Scholar 

  43. Chow VW, Jhanji V, Chi SC. Erlotinib-related corneal melting. Ophthalmology. 2013;120:1104.e1.

    Article  PubMed  Google Scholar 

  44. Saint-Jean A, Sainz de la Maza M, Morral M, et al. Ocular adverse events of systemic inhibitors of the epidermal growth factor receptor: report of 5 cases. Ophthalmology. 2012;119(9):1798–802.

    Article  PubMed  Google Scholar 

  45. Lim LT, Blum RA, Cheng CP, et al. Bilateral anterior uveitis secondary to erlotinib. Eur J Clin Pharmacol. 2010;66:1277.

    Article  PubMed  Google Scholar 

  46. Ali K, Kumar I, Usman-Saeed M, et al. Erlotinib-related bilateral anterior uveitis. BMJ Case Rep. 2011;2011:bcr03.2011.3988.

    Google Scholar 

  47. Sequist LV, Lynch TJ. EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annu Rev Med. 2008;59:429–42.

    Article  CAS  PubMed  Google Scholar 

  48. Tullo AB, Esmaeli B, Murray PI, et al. Ocular findings in patients with solid tumours treated with the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in phase I and II clinical trials. Eye (Lond). 2005;19(7):729–38.

    Article  CAS  Google Scholar 

  49. Holubec L, Liska V, Matejka VM, et al. The role of cetuximab in the treatment of metastatic colorectal cancer. Anticancer Res. 2012;32(9):4007–11.

    CAS  PubMed  Google Scholar 

  50. Specenier P, Koppen C, Vermorken JB. Diffuse punctate keratitis in a patient treated with cetuximab as monotherapy. Ann Oncol. 2007;18:961.

    Article  CAS  PubMed  Google Scholar 

  51. Van Cutsem E, Siena S, Humblet Y, et al. An open-label, single-arm study assessing safety and efficacy of panitumumab in patients with metastatic colorectal cancer refractory to standard chemotherapy. Ann Oncol. 2008;19:92–8.

    Article  PubMed  Google Scholar 

  52. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-over-expressing metastatic breast cancer. J Clin Oncol. 2002;20:719–26.

    Article  CAS  PubMed  Google Scholar 

  53. Guler M, Yilmaz T, Ozercan I, et al. The inhibitory effects of trastuzumab on corneal neovascularization. Am J Ophthalmol. 2009;147:703–8.

    Article  PubMed  CAS  Google Scholar 

  54. Burris HA 3rd, Rugo HS, Vukelja SJ, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):398–405.

    Article  CAS  PubMed  Google Scholar 

  55. Saleh M, Bourcier T, Noel G, et al. Bilateral macular ischemia and severe visual loss following trastuzumab therapy. Acta Oncol. 2011;50(3):477–8.

    Article  PubMed  Google Scholar 

  56. Braghiroli MI, Sabbaga J, Hoff PM. Bevacizumab: overview of the literature. Expert Rev Anticancer Ther. 2012;12(5):567–80.

    Article  CAS  PubMed  Google Scholar 

  57. CATT Research Group, Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.

    Article  Google Scholar 

  58. Rajendram R, Fraser-Bell S, Kaines A, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol. 2012;130(8):972–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sherman JH, Aregawi DG, Lai A, et al. Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology. 2009;73(22):1924–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glusker P, Recht L, Lane B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006;354:980–2.

    Article  CAS  PubMed  Google Scholar 

  61. Ozcan C, Wong SJ, Hari P. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006;354:980–2.

    Article  PubMed  Google Scholar 

  62. Martin G, Bellido L, Cruz JJ. Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J Clin Oncol. 2007;25:3559.

    Article  PubMed  Google Scholar 

  63. Khan KH, Fenton A, Murtagh E, et al. Reversible posterior leukoencephalopathy syndrome following sunitinib therapy: a case report and review of the literature. Tumori. 2012;98(5):139e–42.

    Article  PubMed  Google Scholar 

  64. Yoong J, Chong G, Hamilton K. Bilateral papilledema on sunitinib therapy for advanced renal cell carcinoma. Med Oncol. 2011;28(Suppl 1):S395–7.

    Article  PubMed  Google Scholar 

  65. Wegner A, Khoramnia R. Neurosensory retinal detachment due to sunitinib treatment. Eye (Lond). 2011;25(11):1517–8.

    Article  CAS  Google Scholar 

  66. Richardson PG, Eng C, Kolesar J, et al. Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012;8(5):623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dogan SS, Esmaeli B. Ocular side effects associated with imatinib mesylate and perifosine for gastrointestinal stromal tumor. Hematol Oncol Clin North Am. 2009;23(1):109–14, ix.

    Article  PubMed  Google Scholar 

  68. Keenan JD, Fram NR, McLeod SD, et al. Perifosine-related rapidly progressive corneal ring infiltrate. Cornea. 2010;29(5):583–5.

    Article  PubMed  Google Scholar 

  69. Curran MP. Crizotinib: in locally advanced or metastatic non-small cell lung cancer. Drugs. 2012;72(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  70. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salgia R, Solomon BJ, Shaw AT, et al. Visual effects in anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC) patients treated with crizotinib. J Clin Oncol. 2012;30(Suppl; abstract no. 7596).

    Google Scholar 

  72. US prescribing information for crizotinib https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2a51b0de-47d6-455e-a94c-d2c737b04ff7#S5.5.

  73. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  75. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  77. Infante JR, Fecher LA, Falchook GS, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):773–81.

    Article  CAS  PubMed  Google Scholar 

  78. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  79. LoRusso PM, Krishnamurthi SS, Rinehart JJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16:1924.

    Article  CAS  PubMed  Google Scholar 

  80. US Prescribing information for trametinib. Retrieved and available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=0002ad27-779d-42ab-83b5-bc65453412a1.

  81. Niro A, Strippoli S, Alessio G, et al. Ocular toxicity in metastatic melanoma patients treated with mitogen-activated protein kinase kinase inhibitors: a case series. Am J Ophthalmol. 2015;160:959.

    Article  CAS  PubMed  Google Scholar 

  82. Haura EB, Ricart AD, Larson TG, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450.

    Article  CAS  PubMed  Google Scholar 

  83. Long G, Stroyakovsky D, Gogas H, et al. COMBI-d: a randomized, double-blinded, phase III study comparing the combination of dabrafenib and trametinib to dabrafenib and trametinib placebo as first-line therapy in patients with unresectable or metastatic BRAF V600E/K mutation-positive cutaneous melanoma. J Clin Oncol. 2014;32(Suppl): abstract 9011.

    Google Scholar 

  84. Leijen S, Middleton MR, Tresca P, et al. Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of the MEK inhibitor RO4987655 (CH4987655) in patients with advanced solid tumors. Clin Cancer Res. 2012;18(17):4794–805.

    Article  CAS  PubMed  Google Scholar 

  85. Joshi L, Karydis A, Gemenetzi M, et al. Uveitis as a result of MAP kinase pathway inhibition. Case Rep Ophthalmol. 2013;4:279.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lim J, Lomax AJ, McNeil C, et al. Uveitis and papillitis in the setting of dabrafenib and trametinib therapy for metastatic melanoma: a case report. Ocul Immunol Inflamm. 2018;26:628–31.

    CAS  PubMed  Google Scholar 

  87. Draganova D, Kerger J, Caspers L, et al. Severe bilateral panuveitis during melanoma treatment by Dabrafenib and Trametinib. J Ophthalmic Inflamm Infect. 2015;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sarny S, Neumayer M, Kofler J, et al. Ocular toxicity due to trametinib and dabrafenib. BMC Ophthalmol. 2017;17:146. https://doi.org/10.1186/s12886-017-0541-0.

    Article  PubMed  PubMed Central  Google Scholar 

  89. McCannel TA, Chmielowski B, Finn RS, et al. Bilateral subfoveal neurosensory retinal detachment associated with MEK inhibitor use for metastatic Cancer. JAMA Ophthalmol. 2014;132(8):1005–9.

    Article  PubMed  CAS  Google Scholar 

  90. Huang W, Yang AH, Matsumoto D, et al. PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion. J Ocul Pharmacol Ther. 2009;25:519–30.

    Article  CAS  PubMed  Google Scholar 

  91. Choe CH, McArthur GA, Caro I, et al. Ocular toxicity in BRAF mutant cutaneous melanoma patients treated with vemurafenib. Am J Ophthalmol. 2014;158:831.

    Article  CAS  PubMed  Google Scholar 

  92. Guedj M, Quéant A, Funck-Brentano E, et al. Uveitis in patients with late-stage cutaneous melanoma treated with vemurafenib. JAMA Ophthalmol. 2014;132:1421.

    Article  PubMed  Google Scholar 

  93. Yin VT, Wiraszka TA, Tetzlaff M, et al. Cutaneous eyelid neoplasms as a toxicity of Vemurafenib therapy. Ophthal Plast Reconstr Surg. 2015;31:e112.

    Article  PubMed  Google Scholar 

  94. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jordan EJ, Kelly CM. Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012;13(17):2533–43.

    Article  CAS  PubMed  Google Scholar 

  96. Francis JH, Habib LA, Abramson DH, et al. Clinical and morphologic characteristics of MEK inhibitor-associated retinopathy: differences from central serous Chorioretinopathy. Ophthalmology. 2017;124(12):1788–98.

    Article  PubMed  Google Scholar 

  97. Urner-Bloch U, Urner M, Stieger P, et al. Transient MEK inhibitor-associated retinopathy in metastatic melanoma. Ann Oncol. 2014;25:1437.

    Article  CAS  PubMed  Google Scholar 

  98. van der Noll R, Leijen S, Neuteboom GH, et al. Effect of inhibition of the FGFR-MAPK signaling pathway on the development of ocular toxicities. Cancer Treat Rev. 2013;39:664.

    Article  PubMed  CAS  Google Scholar 

  99. van Dijk EH, van Herpen CM, Marinkovic M, et al. Serous retinopathy associated with mitogen-activated protein kinase kinase inhibition (Binimetinib) for metastatic cutaneous and uveal melanoma. Ophthalmology. 2015;122:1907.

    Article  PubMed  Google Scholar 

  100. Martinez-Garcia M, Banerji U, Albanell J, et al. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin Cancer Res. 2012;18:4806.

    Article  CAS  PubMed  Google Scholar 

  101. Giuffrè C, Miserocchi E, Modorati G, et al. Central serous chorioretinopathy like mimicking multifocal vitelliform macular dystrophy: an ocular side effect of mitogen/extracellular signal-regulated kinase inhibitors. Retin Cases Brief Rep. 2018;12:172–6.

    Article  PubMed  Google Scholar 

  102. Signorelli J, Shah Gandhi A. Cobimetinib. Ann Pharmacother. 2017;51:146.

    Article  CAS  PubMed  Google Scholar 

  103. De La Cruz-Merino L, Di Guardo L, Grob JJ, et al. Clinical features of cobimetinib (COBI)–associated serous retinopathy (SR) in BRAF-mutated melanoma patients (pts) treated in the coBRIM study (abstract). J Clin Oncol. 2015;33(suppl; abstr 9033).

    Google Scholar 

  104. Adjei AA, Cohen RB, Franklin W, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139.

    Article  CAS  PubMed  Google Scholar 

  105. Banerji U, Camidge DR, Verheul HM, et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res. 2010;16:1613.

    Article  CAS  PubMed  Google Scholar 

  106. Iverson C, Larson G, Lai C, et al. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009;69:6839.

    Article  CAS  PubMed  Google Scholar 

  107. Schoenberger SD, Kim SJ. Bilateral multifocal central serous-like Chorioretinopathy due to MEK inhibition for metastatic cutaneous melanoma. Case Rep Ophthalmol Med. 2013;2013:673796.

    PubMed  PubMed Central  Google Scholar 

  108. Stjepanovic N, Velazquez-Martin JP, Bedard PL. Ocular toxicities of MEK inhibitors and other targeted therapies. Ann Oncol. 2016;27:998.

    Article  CAS  PubMed  Google Scholar 

  109. US Prescribing information for trametinib available online at https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=0002ad27-779d-42ab-83b5-bc65453412a1.

  110. Dréno B, Ribas A, Larkin J, et al. Incidence, course, and management of toxicities associated with cobimetinib in combination with vemurafenib in the coBRIM study. Ann Oncol. 2017;28:1137.

    Article  PubMed  Google Scholar 

  111. Clinical trial number NCT00527735 at ClinicalTrials.gov phase II study for previously untreated subjects with Non Small Cell Lung Cancer (NSCLC) or Small Cell Lung Cancer (SCLC).

  112. First-Line Gemcitabine, Cisplatin + Ipilimumab for Metastatic Urothelial CarcinomaClinical trial number NCT01524991 at ClinicalTrials.gov.

  113. Clinical trial number NCT00323882 at ClinicalTrials.gov phase I/II study of MDX-010 in patients with metastatic hormone-refractory prostate cancer (MDX010–21) (COMPLETED).

  114. Maker AV, Phan GQ, Attia P, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol. 2005;12:1005.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nallapaneni NN, Mourya R, Bhatt VR, et al. Ipilimumab-induced hypophysitis and uveitis in a patient with metastatic melanoma and a history of ipilimumab-induced skin rash. J Natl Compr Cancer Netw. 2014;12:1077.

    Article  CAS  Google Scholar 

  116. Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 2005;23:6043.

    Article  CAS  PubMed  Google Scholar 

  117. Robinson MR, Chan CC, Yang JC, et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J Immunother. 2004;27:478–9.

    Article  PubMed  Google Scholar 

  118. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.

    Article  CAS  PubMed  Google Scholar 

  119. Wong RK, Lee JK, Huang JJ. Bilateral drug (ipilimumab)-induced vitritis, choroiditis, and serous retinal detachments suggestive of Vogt-Koyanagi-Harada syndrome. Retin Cases Brief Rep. 2012;6:423.

    Article  PubMed  Google Scholar 

  120. Crosson JN, Laird PW, Debiec M, et al. Vogt-Koyanagi-Harada-like syndrome after CTLA-4 inhibition with ipilimumab for metastatic melanoma. J Immunother. 2015;38:80.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Witmer MT. Treatment of ipilimumab-induced Vogt-Koyanagi-Harada syndrome with oral dexamethasone. Ophthalmic Surg Lasers Imaging Retina. 2017;48:928.

    Article  PubMed  Google Scholar 

  122. Hahn L, Pepple KL. Bilateral neuroretinitis and anterior uveitis following ipilimumab treatment for metastatic melanoma. J Ophthalmic Inflamm Infect. 2016;6:14. https://doi.org/10.1186/s12348-016-0082-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McElnea E, Ní Mhéalóid A, Moran S, et al. Thyroid-like ophthalmopathy in a euthyroid patient receiving Ipilimumab. Orbit. 2014;33:424.

    Article  PubMed  Google Scholar 

  124. McMillen B, Dhillon MS, Yong-Yow S. A rare case of thyroid storm. BMJ Case Rep. 2016;2016. https://doi.org/10.1136/bcr.

  125. Borodic G, Hinkle DM, Cia Y. Drug-induced graves disease from CTLA-4 receptor suppression. Ophthal Plast Reconstr Surg. 2011;27(4):e87–8.

    Article  PubMed  Google Scholar 

  126. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521.

    Article  CAS  PubMed  Google Scholar 

  127. Ribas A, Hamid O, Daud A, et al. Association of Pembrolizumab with Tumor Response and Survival among Patients with Advanced Melanoma. JAMA. 2016;315:1600.

    Article  CAS  PubMed  Google Scholar 

  128. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. United States prescribing information for avelumab. Retrieved and available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5cd725a1-2fa4-408a-a651-57a7b84b2118.

  130. United States prescribing information for atezolizumab. Retrieved and available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6fa682c9-a312-4932-9831-f286908660ee.

  131. Richardson DR, Ellis B, Mehmi I, et al. Bilateral uveitis associated with nivolumab therapy for metastatic melanoma: a case report. Int J Ophthalmol. 2017;10(7):1183–6. https://doi.org/10.18240/ijo.2017.07.28.

    Article  PubMed  PubMed Central  Google Scholar 

  132. de Velasco G, Bermas B, Choueiri TK. Autoimmune arthropathy and uveitis as complications of programmed cell death 1 inhibitor treatment. Arthritis Rheumatol. 2016;68(2):556–7.

    Article  PubMed  Google Scholar 

  133. Karlin J, Gentzler R, Golen J. Bilateral anterior uveitis associated with nivolumab therapy. Ocul Immunol Inflamm. 2016;6:1–3.

    Google Scholar 

  134. Arai T, Harada K, Usui Y, et al. Case of acute anterior uveitis and Vogt-Koyanagi-Harada syndrome-like eruptions induced by nivolumab in a melanoma patient. J Dermatol. 2017 Aug;44(8):975–6.

    Article  PubMed  Google Scholar 

  135. Abu Samra K, Valdes-Navarro M, Lee S, et al. A case of bilateral uveitis and papillitis in a patient treated with pembrolizumab. Eur J Ophthalmol. 2016;26(3):e46–8.

    Article  PubMed  Google Scholar 

  136. Patnaik A, Socinski MA, Gubens MA, et al. Phase I study of pembrolizumab (pembro MK-3475) plus ipilimumab (IPI) as second-line therapy for advanced non-small cell lung cancer (NSCLC): KEYNOTE-021 cohort D9 abstract. J Clin Oncol. 2015;33(Suppl; abstr 8011). Abstract available online at http://meetinglibrary.asco.org/content/148437-156/.

  137. Medina Mendez CA, Ma PC, Singh AD. Acquired trichomegaly. JAMA Ophthalmol. 2014;132(9):1051.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neiweem, A., Jusufbegovic, D., Singh, A.D. (2019). Ocular Complications of Targeted Therapy. In: Singh, A., Damato, B. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-04489-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04489-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04488-6

  • Online ISBN: 978-3-030-04489-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics