Skip to main content

Ocular Complications of Radiotherapy

  • Chapter
  • First Online:
Clinical Ophthalmic Oncology

Abstract

Although radiation therapy has become the treatment of choice for intraocular malignancies, there are numerous posttreatment complications of relevance to the ocular oncologist and referring ophthalmologist. Ocular complications associated with radiotherapy are well known, and the incidence of reported complications is highly variable. Complications depend not only on tumor size and location but also on radiation planning and surgical technique, which may vary between treatment centers. Anterior segment complications occur in 4–23% of treated patients with reported enucleation rates for neovascular glaucoma as high as 12% after treatment. Radiation-induced cataract develops in 8–83% by 5 years postradiation, and radiation retinopathy may occur in at least 10–63% of treated eyes, if not more over time. Optic neuropathy has been reported in up to 16% of patients. All of these complications affect visual acuity, and 26–62% of treated eyes experience a loss of at least two Snellen lines. Although cataract surgery for radiation-induced cataract may be effective in improving visual acuity, other treatment modalities, such as intravitreal triamcinolone or bevacizumab injections, hyperbaric oxygen treatments, and laser photocoagulation, for radiation-induced retinopathy, maculopathy, and optic neuropathy appear to be far less effective. Exudation and release of angiogenic factors from the irradiated tumor (i.e., “toxic tumor syndrome”) can be successfully treated by ablating or resecting the offending tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy – clinical, histopathological, ultrastructural and experimental correlations. Eye. 1991;5:239–51.

    Article  Google Scholar 

  2. Irvine AR, Wood IS. Radiation retinopathy as an experimental model for ischemic proliferative retinopathy and rubeosis iridis. Am J Ophthalmol. 1987;103:790–7.

    Article  CAS  Google Scholar 

  3. Durkin SR, Roos D, Higgs B, et al. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007;85(3):240–50.

    Article  Google Scholar 

  4. Heimann H, Coupland SE, Gochman R, et al. Alterations in expression of mucin, tenascin-c and syndecan-1 in the conjunctiva following retinal surgery and plaque radiotherapy. Graefes Arch Clin Exp Ophthalmol. 2001;239(7):488–95.

    Article  CAS  Google Scholar 

  5. Quivey JM, Char DH, Phillips TL, et al. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys. 1993;26(4):613–8.

    Article  CAS  Google Scholar 

  6. Lumbroso-Le Rouic L, Charif Chefchaouni M, Levy C, et al. 125I plaque brachytherapy for anterior uveal melanomas. Eye. 2004;18(9):911–6.

    Article  CAS  Google Scholar 

  7. Parsons JT, Bova FJ, Firzgerald CR, et al. Severe dry eye syndrome following external beam irradiation. Int J Radiat Oncol Biol Phys. 1994;30:775–80.

    Article  CAS  Google Scholar 

  8. Muller K, Nowak PJ, Naus N, et al. Lacrimal gland radiosensitivity in uveal melanoma patients. Int J Radiat Oncol Biol Phys. 2009;74(2):497–502.

    Article  Google Scholar 

  9. Horwath-Winter J, Schneider M, Wackernagel W, et al. Influence of single-fraction Gamma-Knife radiosurgery on ocular surface and tear function in choroidal melanoma patients. Br J Ophthalmol. 2013;97(4):466–70.

    Article  Google Scholar 

  10. Petrovich Z, McDonnell JM, Palmer D, et al. Histopathologic changes following irradiation for uveal tract melanoma. Am J Clin Oncol. 1994;17(4):298–306.

    Article  CAS  Google Scholar 

  11. Stack R, Elder M, Abdelaal A, et al. New Zealand experience of I125 brachytherapy for choroidal melanoma. Clin Exp Ophthalmol. 2005;33(5):490–4.

    Article  Google Scholar 

  12. Kaliki S, Shields CL, Rojanaporn D, et al. Scleral necrosis after plaque radiotherapy of uveal melanoma: a case–control study. Ophthalmology. 2013;120(5):1004–11. pii: S0161-6420(12)01008-1. 10.1016

    Article  Google Scholar 

  13. Sener EC, Kiratli H, Gedik S, et al. Ocular motility disturbances after episcleral plaque brachytherapy for uveal melanoma. J AAPOS. 2004;8(1):38–45.

    Article  Google Scholar 

  14. Kiratli H, Yilmaz PT, Sargon M. Ultrastructural alterations in extraocular muscles following iodine-125 brachytherapy for uveal melanoma. Strabismus. 2007;15(2):103–9.

    Article  Google Scholar 

  15. Detorakis ET, Engstrom RE Jr, Wallace R, et al. Iris and anterior chamber angle neovascularization after iodine 125 brachytherapy for uveal melanoma. Ophthalmology. 2005;112(3):505–10.

    Article  Google Scholar 

  16. Finger PT. Tumour location affects the incidence of cataract and retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol. 2000;84(9):1068–70.

    Article  CAS  Google Scholar 

  17. Char DH, Lonn LI, Margolis LW. Complications of cobalt plaque therapy of choroidal melanomas. Am J Ophthalmol. 1977;84(4):536–41.

    Article  CAS  Google Scholar 

  18. Fernandes BF, Weisbrod D, Yucel YH, et al. Neovascular glaucoma after stereotactic radiotherapy for juxtapapillary choroidal melanoma: histopathologic and dosimetric findings. Int J Radiat Oncol Biol Phys. 2011;80(2):377–84.

    Article  Google Scholar 

  19. Yanoff M, Duker JS, Augsburger JJ. Ophthalmology. 2nd ed. St Louis: Mosby; 2004.

    Google Scholar 

  20. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.

    Article  CAS  Google Scholar 

  21. Yeung SN, Paton KE, Waite C, et al. Intravitreal bevacizumab for iris neovascularization following proton beam irradiation for choroidal melanoma. Can J Ophthalmol. 2010;45(3):269–73.

    Article  Google Scholar 

  22. Cogan DG, Donaldson DD, Reese AB. Clinical and pathological characteristics of radiation cataract. AMA Arch Ophthalmol. 1952;47(1):55–70.

    Article  CAS  Google Scholar 

  23. Ferrufino-Ponce ZK, Henderson BA. Radiotherapy and cataract formation. Semin Ophthalmol. 2006;21(3):171–80.

    Article  Google Scholar 

  24. Collaborative Ocular Melanoma Study Group. Incidence of cataract and outcomes after cataract surgery in the first 5 years after iodine 125 brachytherapy in the Collaborative Ocular Melanoma Study COMS Report No. 27. Ophthalmology. 2007;114(7):1363–71.

    Article  Google Scholar 

  25. Fontanesi J, Meyer D, Xu S, et al. Treatment of choroidal melanoma with I-125 plaque. Int J Radiat Oncol Biol Phys. 1993;26(4):619–23.

    Article  CAS  Google Scholar 

  26. Muller K, Naus N, Nowak P, et al. Fractionated stereotactic radiotherapy for uveal melanoma, late clinical results. Radiother Oncol. 2012;102(2):219–24.

    Article  Google Scholar 

  27. Archer DB, Gardiner TA. Ionizing radiation and the retina. Curr Opin Ophthalmol. 1994;5(3):59–65.

    Article  CAS  Google Scholar 

  28. McCannel TA, Kim E, Kamrava M, et al. New ultra-wide-field angiographic grading scheme for radiation retinopathy after Iodine-125 brachytherapy for uveal melanoma. Retina. 2018;38(12):2415–21.

    Google Scholar 

  29. Horgan N, Shields CL, Mashayekhi A, et al. Classification and treatment of radiation maculopathy. Curr Opin Ophthalmol. 2010;21(3):233–8.

    Article  Google Scholar 

  30. Monroe AT, Bhandare N, Morris CG, et al. Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys. 2005;61:856–64.

    Article  Google Scholar 

  31. Bhandare N, Monroe AT, Morris CG, et al. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys. 2005;62:1070–7.

    Article  Google Scholar 

  32. Aziz HA, Singh AD. Radiation chorioretinopathy: evidence for effective therapy. Int Ophthalmol Clin. 2015;55(1):53–61.

    Article  Google Scholar 

  33. Gillies MC. Regulators of vascular permeability: potential sites for intervention in the treatment of macular edema. Doc Ophthalmol. 1999;97(3–4):251–60.

    Article  CAS  Google Scholar 

  34. Jermak CM, Dellacroce JT, Heffez J, et al. Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol. 2007;52(5):503–22.

    Article  CAS  Google Scholar 

  35. Finger PT. Radiation retinopathy is treatable with anti- vascular endothelial growth factor bevacizumab (Avastin). Int J Radiat Oncol Biol Phys. 2008;70(4):974–7.

    Article  CAS  Google Scholar 

  36. Pooprasert P, Young-Zvandasara T, Al-Bermani A. Radiation retinopathy treated successfully with aflibercept. BMJ Case Rep. 2017;2017.

    Google Scholar 

  37. Finger PT, Chin KJ, Semenova EA. Intravitreal anti-VEGF therapy for macular radiation retinopathy: a 10-year study. Eur J Ophthalmol. 2016;26(1):60–6.

    Article  Google Scholar 

  38. Hykin PG, Shields CL, Shields JA, et al. The efficacy of focal laser therapy in radiation-induced macular edema. Ophthalmology. 1998;105(8):1425–9.

    Article  CAS  Google Scholar 

  39. Kinyoun JL, Zamber RW, Lawrence BS, et al. Photocoagulation treatment for clinically significant radiation macular oedema. Br J Ophthalmol. 1995;79(2):144–9.

    Article  CAS  Google Scholar 

  40. Kinyoun JL, Chittum ME, Wells CG. Photocoagulation treatment of radiation retinopathy. Am J Ophthalmol. 1988;105(5):470–8.

    Article  CAS  Google Scholar 

  41. Aziz HA, Singh N, Bena J, et al. Vision loss following Episcleral brachytherapy for Uveal melanoma: development of a vision prognostication tool. JAMA Ophthalmol. 2016;134(6):615–20.

    Article  Google Scholar 

  42. Saconn PA, Gee CJ, Greven CM, et al. Alternative dose for choroidal melanoma treated with an iodine-125 radioactive plaque: a single-institution retrospective study. Int J Radiat Oncol Biol Phys. 2010;78(3):844–8.

    Article  CAS  Google Scholar 

  43. Murray TG, Markoe AM, Gold AS, et al. Long-term follow up comparing two treatment dosing strategies of (125) I plaque radiotherapy in the management of small/medium posterior uveal melanoma. J Ophthalmol. 2013;2013:517032.

    Google Scholar 

  44. Echegaray J, Bechrakis N, Singh N, et al. Iodine-125 brachytherapy for uveal melanoma: a systematic review of radiation dose. Ocul Oncol Pathol. 2017;3:193–8.

    Article  Google Scholar 

  45. Singh AD, Marwaha G, Wilkinson A, et al. Dosimetric benefit of a new ophthalmic radiation plaque. Invest Ophthalmol Vis Sci. 2012;53(14):3402.

    Google Scholar 

  46. Horgan N, Shields CL, Mashayekhi A, et al. Periocular triamcinolone for prevention of macular edema after plaque radiotherapy of uveal melanoma: a randomized controlled trial. Ophthalmology. 2009;116(7):1383–90.

    Article  Google Scholar 

  47. Shah SU, Shields CL, Bianciotto CG, et al. Intravitreal bevacizumab at 4-month intervals for prevention of macular edema after plaque radiotherapy of uveal melanoma. Ophthalmology. 2014;121(1):269–75.

    Article  Google Scholar 

  48. Kim IK, Lane AM, Jain P, et al. Ranibizumab for the prevention of radiation complications in patients treated with proton beam irradiation for choroidal melanoma. Trans Am Ophthalmol Soc. 2016;114:T2.

    Google Scholar 

  49. Oliver SC, Leu MY, DeMarco JJ, et al. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol. 2010;128(7):888–93.

    Article  Google Scholar 

  50. Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107(2):370.

    Article  CAS  Google Scholar 

  51. Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology. 1985;92(8):1118–26.

    Article  CAS  Google Scholar 

  52. Miller NR. Radiation-induced optic neuropathy: still no treatment. Clin Exp Ophthalmol. 2004;32(3):233–5.

    Article  Google Scholar 

  53. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.

    Article  Google Scholar 

  54. Brown GC, Shields JA, Sanborn G, et al. Radiation optic neuropathy. Ophthalmology. 1982;89(12):1489–93.

    Article  CAS  Google Scholar 

  55. Konstantinidis L, Groenewald C, Coupland SE, et al. Trans-scleral local resection of toxic choroidal melanoma after proton beam radiotherapy. Br J Ophthalmol. 2014;98(6):775–9.

    Article  Google Scholar 

  56. McCannel TA. Post-brachytherapy tumor endoresection for treatment of toxic maculopathy in choroidal melanoma. Eye (Lond). 2013;27(8):984–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara A. McCannel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamrava, M., Lamb, J., Soberón, V., McCannel, T.A. (2019). Ocular Complications of Radiotherapy. In: Singh, A., Damato, B. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-04489-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04489-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04488-6

  • Online ISBN: 978-3-030-04489-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics