Skip to main content

Principles of Laser Therapy

  • Chapter
  • First Online:
Clinical Ophthalmic Oncology
  • 748 Accesses

Abstract

Since its inception, laser has been increasingly used for treatment of multiple ocular conditions. Stimulated emission of photons in a lasing medium produces laser beams that vary in their energy according to their wavelength. Ophthalmic lasers could produce thermal, chemical, or mechanical effects on ocular tissues. The factors that determine the laser effects include the degree of absorption of a specific laser wavelength by the tissue pigments, laser power, the size of laser spot on the target tissue, the duration of application, and media clarity.

Ophthalmic lasers are delivered through slit lamp, indirect ophthalmoscope, or fiber-optic probe. Advanced delivery systems enabled more tolerable, precise, and shorter treatment sessions that can be monitored on a wide screen.

Techniques of ophthalmic laser therapy include laser photocoagulation, transpupillary thermotherapy, and photodynamic therapy. These techniques are employed in ophthalmic oncology to treat a variety of intraocular and periocular tumors. Laser is used as a primary or adjuvant treatment and as a treatment for some radiation-induced toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein A. On the quantum mechanics of radiation [in German]. Phys Z. 1917;18:121–8.

    CAS  Google Scholar 

  2. Schechter RJ. An introduction to basic laser physics. In: Tasman W, Jaeger EA, eds. Duane’s clinical ophthalmology. 1992 Revised edition. Philadelphia: J.B. Lippincott Company; 1992. (1)69A:1–8.

    Google Scholar 

  3. Sramek C, Paulus Y, Nomoto H, et al. Dynamics of retinal photocoagulation and rupture. J Biomed Opt. 2009;14(3):034007.

    Article  Google Scholar 

  4. LaMuraglia GM, Adili F, Karp SJ, et al. Photodynamic therapy inactivates extracellular matrix-basic fibroblast growth factor: insights to its effect on the vascular wall. J Vasc Surg. 1997;26(2):294–301.

    Article  CAS  Google Scholar 

  5. Schmidt-Erfurth U, Miller J, Sickenberg M, et al. Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples. Graefes Arch Clin Exp Ophthalmol. 1998;236(5):365–74.

    Article  CAS  Google Scholar 

  6. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103(2):577–644.

    Article  CAS  Google Scholar 

  7. Capon MR, Docchio F, Mellerio J. Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):362–6.

    Article  CAS  Google Scholar 

  8. Fankhauser F, Kwasniewska S. Laser in ophthalmology. Basic, diagnostic and surgical aspects. The Hague: Kugler Publications; 2003.

    Google Scholar 

  9. Palanker DV, Blumenkranz MS, Marmor MF. Fifty years of ophthalmic laser therapy. Arch Ophthalmol. 2011;129(12):1613–9.

    Article  Google Scholar 

  10. Peyman GA, Raichand M, Zeimer RC. Ocular effects of various laser wavelengths. Surv Ophthalmol. 1984;28(5):391–404.

    Article  CAS  Google Scholar 

  11. Pomerantzeff O, Kaneko H, Donovan RH, et al. Effect of the ocular media on the main wavelengths of argon laser emission. Invest Ophthalmol Vis Sci. 1976;15:70–7.

    CAS  Google Scholar 

  12. Al-Hussainy S, Dodson PM, Gibson JM. Pain response and follow-up of patients undergoing panretinal laser photocoagulation with reduced exposure times. Eye (Lond). 2008;22:96–9.

    Article  CAS  Google Scholar 

  13. Soleimani A, Rasta SH, Banaei T, et al. Effects of laser physical parameters on lesion size in retinal photocoagulation surgery: clinical OCT and experimental study. J Biomed Phys Eng. 2017;7(4):355–64.

    CAS  Google Scholar 

  14. Mainster MA, Crossman JL, Erickson PJ, et al. Retinal laser lenses: magnification, spot size, and field of view. Br J Ophthalmol. 1990;74(3):177–9.

    Article  CAS  Google Scholar 

  15. Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina. 2006;26(3):370–6.

    Article  Google Scholar 

  16. Verdaasdonk RM, van Swol CF. Laser light delivery systems for medical applications. Phys Med Biol. 1997;42(5):869–94.

    Article  CAS  Google Scholar 

  17. Yadav NK, Jayadev C, Rajendran A, et al. Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol. 2014;62(1):50–4.

    Article  Google Scholar 

  18. L’Esperance FJ. Ophthalmic lasers. St. Louis: CV Mosby; 1983. p. 340–50.

    Google Scholar 

  19. Brader HS, Young LH. Subthreshold diode micropulse laser: a review. Semin Ophthalmol. 2016;31(1–2):30–9.

    Article  Google Scholar 

  20. Finger PT, Kurli M. Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol. 2005;89(6):730–8.

    Article  CAS  Google Scholar 

  21. Shields CL, Shields JA, Kiratli H, et al. Treatment of retinoblastoma with indirect ophthalmoscope laser photocoagulation. J Pediatr Ophthalmol Strabismus. 1995;2(5):317–22.

    Google Scholar 

  22. Schmidt D, Natt E, Neumann HP. Long-term results of laser treatment for retinal angiomatosis in von Hippel-Lindau disease. Eur J Med Res. 2000;5(2):47–58.

    CAS  Google Scholar 

  23. Singh AD. Ocular phototherapy. Eye. 2013;27(2):190–8.

    Article  CAS  Google Scholar 

  24. Wesley RE, Bond JB. Carbon dioxide laser in ophthalmic plastic and orbital surgery. Ophthalmic Surg. 1985;16(10):631–3.

    CAS  Google Scholar 

  25. Oosterhuis JA, Journee-de Korver HG, Kakebeeke-Kemme HM, et al. Transpupillary thermotherapy in choroidal melanomas. Arch Ophthalmol. 1995;113(3):315–21.

    Article  CAS  Google Scholar 

  26. Singh AD, Kivela T, Seregard S, et al. Primary transpupillary thermotherapy of “small” choroidal melanoma: is it safe? Br J Ophthalmol. 2008;92(6):727–8.

    Article  Google Scholar 

  27. Singh AD, Rundle PA, Berry-Brincat A, et al. Extrascleral extension of choroidal malignant melanoma following transpupillary thermotherapy. Eye (Lond). 2004;18(1):91–3.

    Article  CAS  Google Scholar 

  28. Dennaoui J, Bronkhorst IH, Ly LV, et al. Changes in immunological markers and influx of macrophages following trans-scleral thermotherapy of uveal melanoma. Acta Ophthalmol. 2011;89(3):268–73.

    Article  Google Scholar 

  29. Shields CL, Cater J, Shields JA, et al. Combined plaque radiotherapy and transpupillary thermotherapy for choroidal melanoma: tumor control and treatment complications in 270 consecutive patients. Arch Ophthalmol. 2002;120(7):933–40.

    Article  Google Scholar 

  30. Gunduz K. Transpupillary thermotherapy in the management of circumscribed choroidal hemangioma. Surv Ophthalmol. 2004;49(3):316–27.

    Article  Google Scholar 

  31. Abramson DH, Schefler AC. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma: technique and predictors of success. Ophthalmology. 2004;111(5):984–99.

    Article  Google Scholar 

  32. Schmidt-Erfurth U, Hasan T, Gragoudas E, et al. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994;101(12):1953–61.

    Article  CAS  Google Scholar 

  33. Kramer M, Miller JW, Michaud N, et al. Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Selective treatment of choroidal neovascularization in monkeys. Ophthalmology. 1996;103(3):427–38.

    Article  CAS  Google Scholar 

  34. Woodburn KW, Engelman CJ, Blumenkranz MS. Photodynamic therapy for choroidal neovascularization: a review. Retina. 2002;22(4):391–405.

    Article  Google Scholar 

  35. Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119(2):198–207.

    CAS  Google Scholar 

  36. Erikitola OC, Crosby-Nwaobi R, Lotery AJ, et al. Photodynamic therapy for central serous chorioretinopathy. Eye. 2014;28(8):944–57.

    Article  CAS  Google Scholar 

  37. Wong CW, Cheung CM, Mathur R, et al. Three-year results of polypoidal choroidal vasculopathy treated with photodynamic therapy: retrospective study and systematic review. Retina. 2015;35(8):1577–93.

    Article  Google Scholar 

  38. Boixadera A, Garcia-Arumi J, Martinez-Castillo V, et al. Prospective clinical trial evaluating the efficacy of photodynamic therapy for symptomatic circumscribed choroidal hemangioma. Ophthalmology. 2009;116:100–5.

    Article  Google Scholar 

  39. Sachdeva R, Dadgostar H, Kaiser PK, et al. Verteporfin photodynamic therapy of six eyes with retinal capillary haemangioma. Acta Ophthalmol. 2010;88(8):e334–40.

    Article  Google Scholar 

  40. Schmidt-Erfurth UM, Kusserow C, Barbazetto IA, et al. Benefits and complications of photodynamic therapy of papillary capillary hemangiomas. Ophthalmology. 2002;109(7):1256–66.

    Article  Google Scholar 

  41. García-Arumí J, Amselem L, Gunduz K, et al. Photodynamic therapy for symptomatic subretinal fluid related to choroidal nevus. Retina. 2012;32(5):936–41.

    Article  Google Scholar 

  42. Fabian ID, Stacey AW, Harby LA, et al. Primary photodynamic therapy with verteporfin for pigmented posterior pole cT1a choroidal melanoma: a 3-year retrospective analysis. Br J Ophthalmol. 2018. pii: bjophthalmol-2017-311747.

    Google Scholar 

  43. Turkoglu EB, Pointdujour-Lim R, Mashayekhi A, et al. Photodynamic therapy as a primary treatment for small choroidal melanoma. Retina. 2018; https://doi.org/10.1097/IAE.0000000000002169. [Epub ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krema, H. (2019). Principles of Laser Therapy. In: Singh, A., Damato, B. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-04489-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04489-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04488-6

  • Online ISBN: 978-3-030-04489-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics