Skip to main content

Similarities Between Dynamics at Atomic and Cosmological Scales

  • Chapter
  • First Online:
Fractional Dynamics, Anomalous Transport and Plasma Science

Abstract

Since the non-differentiability becomes a fundamental property of the motions space [1,2,3,4], a correspondence between the interaction processes and multifractality of the motion trajectories can be established. Then, for all scale resolutions, the geodesics equations (in the form of the Schrödinger equation of fractal type) and some applications (similarities between dynamics at atomic and cosmic scales) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman Publishers, New York, 1982)

    MATH  Google Scholar 

  2. M.F. Barnsley, Fractals Everywhere (Morgan Kaufmann Publisher, San Francisco, 1993)

    MATH  Google Scholar 

  3. R. Badii, A. Politi, Complexity: Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  4. M. Mitchell, Complexity: A Guided Tour (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  5. L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics (Imperial College Press, London, 2011)

    Book  Google Scholar 

  6. I. Mercheş, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems (World Scientific Publisher, Singapore, 2016)

    MATH  Google Scholar 

  7. J. Cresson, Non-differentiable transformations on \(\mathbb{R} ^{n}\). Int. J. Geom. Meth. Mod. Phys. 03, 13–45 (2006)

    Article  MathSciNet  Google Scholar 

  8. S. Florea, I. Dumitrache, Elemente şi Circuite Fluidice (in Romanian) (Romanian Academy Publishing House, Bucureşti, 1979)

    Google Scholar 

  9. P.C. Cristescu, Dinamici neliniare şi haos. Fundamente teoretice şi aplicaţii (in Romanian) (Romanian Academy Publishing House, Bucureşti, 2008)

    Google Scholar 

  10. S. Ţiţeica, Quantum Mechanics (Academic Press, Bucharest, 1984)

    Google Scholar 

  11. A.G. Agnese, R. Festa, Clues to discretization on the cosmic scale. Phys. Lett. A 227, 165–171 (1997)

    Article  ADS  Google Scholar 

  12. M. Mayor, D. Queloz, A Jupiter-Mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  ADS  Google Scholar 

  13. Landolt-Börnstein, Internal Structure and Dynamics of Galaxies, Handbook VI/2C.9.2 (Springer, Berlin, 1982)

    Google Scholar 

  14. S.E. Schneider, E.E. Salpeter, Velocity differences in binary galaxies. I. Suggestions for a non-monotonic, two-component distribution. Astrophys. J. 385, 32–48 (1992)

    Article  ADS  Google Scholar 

  15. W.J. Cocke, Statistical methods for investigating periodicities in double-galaxy redshifts. Astrophys. J. 393, 59–67 (1992)

    Article  ADS  Google Scholar 

  16. W.G. Tifft, W.J. Cocke, Global redshift quantization. Astrophys. J. 287, 492–507 (1984)

    Article  ADS  Google Scholar 

  17. B.N. Guthrie, W.M. Napier, Mon. Not. R. Astron. Soc. 253, 533 (1991)

    Article  ADS  Google Scholar 

  18. J. Argyris, C. Marin, C. Ciubotariu, Physics of Gravitation and the Universe (Spiru Haret Publishing House, Iaşi, 2002 and Tehnica-Info Publishing House, Chişinău, Vol. II, 2002)

    Google Scholar 

  19. H.E. White, Pictorial representations of the electron cloud for hydrogen-like atoms. Phys. Rev. 37, 1416 (1931)

    Article  ADS  Google Scholar 

  20. M. DerSarkissian, Does wave-particle duality apply to galaxies? Lett Nuovo Cimento 40(13), 390–394 (1984)

    Article  ADS  Google Scholar 

  21. M. Agop, H. Matsuzawa, I. Oprea, R. Vlad, C. Sandu, CGh Buzea, Some implications of the gravitomagnetic field in fractal spacetime theory. Aust. J. Phys. 53, 217 (1999)

    Article  ADS  Google Scholar 

  22. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Gavriluţ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agop, M., Gavriluţ, A., Crumpei, G. (2018). Similarities Between Dynamics at Atomic and Cosmological Scales. In: Skiadas, C. (eds) Fractional Dynamics, Anomalous Transport and Plasma Science. Springer, Cham. https://doi.org/10.1007/978-3-030-04483-1_8

Download citation

Publish with us

Policies and ethics