Skip to main content

Modular and Holomorphic Graph Functions from Superstring Amplitudes

  • Chapter
  • First Online:
Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

We compare two classes of functions arising from genus-one superstring amplitudes: modular and holomorphic graph functions. We focus on their analytic properties, we recall the known asymptotic behaviour of modular graph functions and we refine the formula for the asymptotic behaviour of holomorphic graph functions. Moreover, we give new evidence of a conjecture appeared in [4] which relates these two asymptotic expansions.

IPHT-t18/089.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reason for the rational coefficient appearing in Eq. (1) is that we want to follow the notation adopted in the modular graph function literature. Setting \(y=-2\pi \, Im(\tau )\), which mathematically would be a more natural choice, one would get a cleaner statement.

  2. 2.

    After tensoring with \(\mathbb {C}\), more generally considering “relative cohomologies”.

  3. 3.

    More precisely, it should be super-Riemann surfaces, but this does not matter here.

  4. 4.

    It is well known that any punctured genus-one Riemann surface can be realized as a complex torus.

  5. 5.

    Note that we have changed the sign of the propagator w.r.t. [6], following [4].

  6. 6.

    Recent indications suggest that considering only the action of the Laplace operator we lose some information, and it is instead better to consider the action of the Cauchy-Riemann derivative \(\nabla _\tau =2i(Im(\tau ))^2\partial _\tau \) and of its complex conjugate \(\overline{\nabla }_\tau \) [22, 25].

  7. 7.

    It is however believed that this should not always be true.

  8. 8.

    There is a typo in the coefficient of \(y^{-4}\) in the corresponding formula in [42].

  9. 9.

    This identity was first proven by Zagier by a complicated direct computation (private communication).

  10. 10.

    This is only true for graphs with at most four vertices, but there is an obvious n-point version of the integral (27) whose coefficients, i.e. all possible graph functions, must be combinations of A-elliptic MZVs.

  11. 11.

    Here we deviate from [7] and we prefer to exclude the quasi-modular form \(G_2(\tau )\).

  12. 12.

    Since \(\mathbb {H}\) is simply connected, we can choose arbitrary paths from \(\tau ^\prime \) to \(i\infty \) and from 0 to \(\tau ^\prime \).

  13. 13.

    While for A-elliptic MZVs we know that inverting \(2\pi i\) is necessary, we suspect that no inverse powers of \(2\pi i\) should appear in the asymptotic expansion of A-cycle graph functions.

  14. 14.

    This case could only be checked numerically, for about five-hundred digits.

  15. 15.

    In this case, one simply takes the real part and lands on non-holomorphic Eisenstein series [16].

References

  1. A. Basu, Class. Quantum Gravity 33(23), 235011, 24 (2016), arXiv:1606.07084 [hep-th]

  2. P. Belkale, P. Brosnan, Duke Math. J. 116(1), 147–188 (2003), arXiv:math/0012198 [math.AG]

  3. D.J. Broadhurst, D. Kreimer, Int. J. Mod. Phys. 6(4), 519–524 (1995), arXiv:hep-ph/9504352

  4. J. Broedel, O. Schlotterer F. Zerbini, (2018), arXiv:1803.00527 [hep-th]

  5. J. Broedel, N. Matthes, G. Richter, O. Schlotterer, (2017), arXiv:1704.03449 [hep-th]

  6. J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, J. High Energy Phys. (7), 112 (2015), arXiv:1412.5535 [hep-th]

  7. J. Broedel, N. Matthes, O. Schlotterer, J. Phys. A 49, 155203, 49 (2016), arXiv:1507.02254 [hep-th]

  8. J. Broedel, O. Schlotterer, S. Stieberger, T. Terasoma, Phys. Rev. D 89 (2014), arXiv:1304.7304, [hep-th]

  9. F. Brown, Ann. Sci. Éc. Norm. Supér. (4) 42(3), 371–489 (2009), arXiv:math/0606419 [math.AG]

  10. F. Brown, Ann. Math. (2) 175(2), 949–976 (2012), arXiv:1102.1312 [math.AG]

    Article  MathSciNet  Google Scholar 

  11. F. Brown O. Schnetz, Duke Math. J. 161(10), 1817–1862 (2012), arXiv:1006.4064 [math.AG]

    Article  MathSciNet  Google Scholar 

  12. F. Brown, C.R. Acad. Sci. Paris 338, 527–532 (2004)

    Google Scholar 

  13. F. Brown, Forum Math. Sigma 2 (2014), arXiv:1309.5309 [math.NT]

  14. F. Brown, Res. Math. Sci. 5, 5–7 (2018), arXiv:1707.01230 [math.NT]

  15. F. Brown (2017), arXiv:1708.03354 [math.NT]

  16. F. Brown (2014), arXiv:1407.5167 [math.NT]

  17. P. Deligne A.B. Goncharov, Ann. Sci. École Norm. Sup. (4), 38(1), 1–56 (2005), arXiv:math/0302267 [math.NT]

  18. E. D’Hoker, M.B. Green, J. Number Theory 144, 111 (2014), arXiv:1308.4597 [hep-th]

  19. E. D’Hoker, M.B. Green, B. Pioline, (2017), arXiv:1712.06135 [hep-th]

  20. E. D’Hoker, M.B. Green, B. Pioline, (2018), arXiv:1806.02691 [hep-th]

  21. E. D’Hoker, M.B. Green, Ö. Gürdoğan, P. Vanhove, Commun. Number Theory Phys. 11(1), 165–218 (2017), arXiv:1512.06779 [hep-th]

  22. E. D’Hoker, M.B. Green (2016), arXiv:1308.4597 [hep-th]

  23. E. D’Hoker, M.B. Green, P. Vanhove, JHEP 041(08) (2015), arXiv:1502.06698 [hep-th]

  24. E. D’Hoker, W. Duke (2016), arXiv:1708.07998 [math.NT]

  25. E. D’Hoker, J. Kaidi, J. High Energy Phys. (11), 051 (2016), arXiv:1708.07998 [math.NT]

  26. R. Donagi, E. Witten, String-Math 2012. Proceedings of Symposia in Pure Mathematics, vol. 90 (American Mathematical Society, Providence, 2015), pp. 19–71, arXiv:1304.7798 [hep-th]

  27. B. Enriquez, Bull. Soc. Math. Fr. 144(3), 395–427 (2016), arXiv:1301.3042 [math.NT]

  28. A.B. Goncharov, Y.I. Manin, Compos. Math. 140(1), 1–14 (2004), arXiv:math/0204102 [math.AG]

  29. M.B. Green, P. Vanhove, Phys. Rev. D 61 (2000), [arXiv:hep-th/9910056]

  30. M.B. Green, J.G. Russo, P. Vanhove, JHEP (0802) (2008), arXiv:0801.0322 [hep-th]

  31. M. Kontsevich, D. Zagier, Mathematics Unlimited-2001 and Beyond (Springer, Berlin, 2001), pp. 771–808

    Book  Google Scholar 

  32. P. Lochak, N. Matthes, L. Schneps (2017), arXiv:1703.09410 [math.NT]

  33. Y.I. Manin, Algebraic Geometry and Number Theory. Progress in Mathematics, vol. 253 (Birkhäuser Boston, Boston, 2006), pp. 565–597, arXiv:math/0502576 [math.NT]

  34. N. Matthes, Ph.D. thesis (2016)

    Google Scholar 

  35. T. Terasoma (2004), arXiv:math/0410306 [math.AG]

  36. O. Schlotterer, S. Stieberger, J. Phys. A 46(47) (2013), arXiv:1205.1516, [hep-th]

  37. S. Stieberger, J. Phys. A 47 (2014), arXiv:1310.3259 [hep-th]

  38. D. Zagier, First European Congress of Mathematics Vol. II (Paris, 1992). Progress in Mathematics, vol. 120 (Birkhäuser, Basel, 1994), pp. 497–512

    Google Scholar 

  39. D. Zagier, Math. Ann. 286(1–3), 613–624 (1990)

    Article  MathSciNet  Google Scholar 

  40. D. Zagier, In preparation

    Google Scholar 

  41. D. Zagier, Invent. Math. 104(3), 449–465 (1991)

    Article  MathSciNet  Google Scholar 

  42. F. Zerbini, Commun. Number Theory Phys. 10(4), 703–737 (2016), arXiv:1512.05689 [hep-th]

  43. F. Zerbini, Diss. Uni. Bonn, Ph.D. thesis (2017), arXiv:1804.07989 [math-ph]

Download references

Acknowledgements

We would like to thank KMPB for the organization of this successful conference. Moreover, we would like to thank C. Dupont, O. Schlotterer and M. Tapus̆ković for useful comments on a first draft and J. Brödel and E. Garcia–Failde for their help with the figures. Our research was supported by a French public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Zerbini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zerbini, F. (2019). Modular and Holomorphic Graph Functions from Superstring Amplitudes. In: Blümlein, J., Schneider, C., Paule, P. (eds) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04480-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04480-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04479-4

  • Online ISBN: 978-3-030-04480-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics