Skip to main content

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Eta quotients on \(\varGamma _0(6)\) yield evaluations of sunrise integrals at 2, 3, 4 and 6 loops. At 2 and 3 loops, they provide modular parametrizations of inhomogeneous differential equations whose solutions are readily obtained by expanding in the nome q. Atkin–Lehner transformations that permute cusps ensure fast convergence for all external momenta. At 4 and 6 loops, on-shell integrals are periods of modular forms of weights 4 and 6 given by Eichler integrals of eta quotients. Weakly holomorphic eta quotients determine quasi-periods. A Rademacher sum formula is given for Fourier coefficients of an eta quotient that is a Hauptmodul for \(\varGamma _0(6)\) and its generalization is found for all levels with genus 0, namely for \(N = 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25\). There are elliptic obstructions at \(N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49,\) with genus 1. We surmount these, finding explicit formulas for Fourier coefficients of eta quotients in thousands of cases. We show how to handle the levels \(N=22, 23, 26, 28, 29, 31, 37, 50\), with genus 2, and the levels \(N=30,33,34,35,39,40,41,43,45,48,64\), with genus 3. We also solve examples with genera 4, 5, 6, 7, 8, 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.-S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299

    Article  MathSciNet  Google Scholar 

  2. D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, Elliptic integral evaluations of Bessel moments. J. Phys. A 41, 205203 (2008), arXiv:0801.0891

  3. F. Beukers, Irrationality proofs using modular forms. Journées arithmétiques de Besançon, Astérisque 147–148, 271–283 (1987)

    MathSciNet  MATH  Google Scholar 

  4. S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theory 148, 328–364 (2015), arXiv:1309.5865

    Article  MathSciNet  Google Scholar 

  5. S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos. Math. 151, 2329–2375 (2015), arXiv:1406.2664

    Article  MathSciNet  Google Scholar 

  6. C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528–550 (2017), arXiv:1705.08952

    Article  MathSciNet  Google Scholar 

  7. D. Broadhurst, Multiple zeta values and modular forms in quantum field theory, in Computer Algebra in Quantum Field Theory. Texts and Monographs in Symbolic Computation, ed. by C. Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 33–73

    MATH  Google Scholar 

  8. D. Broadhurst, Feynman integrals, L-series and Kloosterman moments, Commun. Number Theory Phys. 10, 527–569 (2016), arXiv:1604.03057

    Article  MathSciNet  Google Scholar 

  9. D. Broadhurst, A. Mellit, Perturbative quantum field theory informs algebraic geometry, in Loops and Legs in Quantum Field Theory, PoS (LL2016) 079 (2016)

    Google Scholar 

  10. D. Broadhurst, O. Schnetz, Algebraic geometry informs perturbative quantum field theory, in Loops and Legs in Quantum Field Theory, PoS (LL2014) 078 (2014)

    Google Scholar 

  11. D.J. Broadhurst, The master two-loop diagram with masses. Z. Phys. C 47, 115–124 (1990)

    Article  Google Scholar 

  12. D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension. Z. Phys. C 60, 287–301 (1993), arXiv:hep-ph/9304303

  13. F. Brown, A class of non-holomorphic modular forms III: real analytic cusp forms for \(SL_2(Z)\), arXiv:1710.07912

  14. F. Brown, O. Schnetz, A K3 in \(\phi ^4\). Duke Math. J. 161, 1817–1862 (2012), arXiv:1006.4064

    Article  MathSciNet  Google Scholar 

  15. H.H. Chan, W. Zudilin, New representations for Apéry-like sequences. Mathematika 56, 107–117 (2010)

    Article  Google Scholar 

  16. H. Cohen, Tutorial for modular forms in Pari/GP (2018), http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.10.0/tutorial-mf.pdf

  17. J.F.R. Duncan, M.J. Griffin, K. Ono, Moonshine. Res. Math. Sci. 2, 11 (2015), arXiv:1411.6571

  18. M. Eichler, D. Zagier, The Theory of Jacobi Forms. Progress in Mathematics, vol. 55 (Birkhäuser, Boston, 1985)

    Book  Google Scholar 

  19. N. Elkies, The automorphism group of the modular curve \(X_0(63)\). Compos. Math. 74, 203–208 (1990)

    Google Scholar 

  20. G.S. Joyce, On the simple cubic lattice Green function. Philos. Trans. R. Soc. Math. Phys. Sci. 273, 583–610 (1973)

    Article  MathSciNet  Google Scholar 

  21. P. Kleban, D. Zagier, Crossing probabilities and modular forms. J. Stat. Phys. 113, 431–454 (2003)

    Article  MathSciNet  Google Scholar 

  22. M.I. Knopp, Rademacher on \(J(\tau )\), Poincaré series of nonpositive weights and the Eichler cohomology. Not. Am. Math. Soc. 37, 385–393 (1990)

    Google Scholar 

  23. S. Laporta, High-precision calculation of the 4-loop contribution to the electron \(g-2\) in QED. Phys. Lett. B 772, 232–238 (2017), arXiv:1704.06996

  24. R.S. Maier, On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24, 1–73 (2009), arXiv:math/0611041

  25. G. Martin, Dimensions of the spaces of cusp forms and newforms on \(\Gamma _0(N)\) and \(\Gamma _1(N)\). J. Number Theory 112, 298–331 (2005), arXiv:math/0306128

  26. H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58, 169–215 (1932)

    Article  MathSciNet  Google Scholar 

  27. H. Rademacher, The Fourier coefficients of the modular invariant \(J(\tau )\). Am. J. Math. 60, 501–512 (1938)

    Google Scholar 

  28. H. Rademacher, The Fourier series and the functional equation of the absolute modular invariant \(J(\tau )\). Am. J. Math. 61, 237–248 (1939)

    Google Scholar 

  29. H. Rademacher, On the expansion of the partition function in a series. Ann. Math. 44, 416–422 (1943)

    Article  MathSciNet  Google Scholar 

  30. A. Sabry, Fourth order spectral functions for the electron propagator. Nucl. Phys. 33, 401–430 (1962)

    Article  MathSciNet  Google Scholar 

  31. N.-P. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Invent. Math. 94(1988), 113–146 (1988)

    Article  MathSciNet  Google Scholar 

  32. Y. Yang, Transformation formulas for generalized Dedekind eta functions. Bull. Lond. Math. Soc. 36, 671–682 (2004)

    Article  MathSciNet  Google Scholar 

  33. Y. Yang, Defining equations of modular curves. Adv. Math. 204, 481–508 (2006)

    Article  MathSciNet  Google Scholar 

  34. Y. Zhou, Hilbert transforms and sum rules of Bessel moments. Ramanujan J. (2017). https://doi.org/10.1007/s11139-017-9945-y, arXiv:1706.01068

    Article  MathSciNet  Google Scholar 

  35. Y. Zhou, Wick rotations, Eichler, integrals, and multi-loop Feynman diagrams. Commun. Number Theory Phys. 12, 127–192 (2018), arXiv:1706.08308

    Article  MathSciNet  Google Scholar 

  36. Y. Zhou, Wronskian, factorizations and Broadhurst-Mellit determinant formulae. Commun. Number Theory Phys. 12, 355–407 (2018), arXiv:1711.01829

    Article  MathSciNet  Google Scholar 

  37. Y. Zhou, On Laporta’s 4-loop sunrise formulae, arXiv:1801.02182

  38. Y. Zhou, Some algebraic and arithmetic properties of Feynman diagrams, to appear in this volume, arXiv:1801.05555

Download references

Acknowledgements

The second author thanks KMPB for hospitality and colleagues at conferences in Zeuthen, Bonn, St. Goar and Les Houches for advice and encouragement that emboldened our joint effort to tackle eta quotients beyond the remit of genus zero so far encountered in massive Feynman diagrams. We especially thank Johannes Blümlein for his question on the possibility of obtaining an explicit formula for Fourier coefficients of the Hauptmodul of \(\varGamma _0(6)\) and Freeman Dyson for urging us to try to emulate the notable work by Rademacher on partition numbers [29]. We thank Yajun Zhou and an anonymous referee for helpful suggestions that improved our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Broadhurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acres, K., Broadhurst, D. (2019). Eta Quotients and Rademacher Sums . In: Blümlein, J., Schneider, C., Paule, P. (eds) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04480-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04480-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04479-4

  • Online ISBN: 978-3-030-04480-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics