Skip to main content

Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 25))

Abstract

This review paper focuses on the use of iron oxide nanocomposites for the removal of hexavalent chromium, Cr(VI), from wastewater. Cr(VI) is very toxic and carcinogenic as compared to Cr(III) and can cause health defects such as liver, lung and kidney damage. It is mostly expelled from untreated or partially treated effluents from mining operation, electroplating and water cooling activities. As a result, these activities produce effluents with higher concentration levels of Cr(VI) than the acceptable discharge limits of 0.1 and 0.05 mg/L in inland surface water and drinking water, respectively, as regulated by the World Health Organisation (WHO). This review paper summarises the performance of different water treatment technologies studied on the last decade. Adsorption technology has emerged as an attractive method for Cr(VI) removal from industrial wastewater amongst the mentioned methods. Hence, the adsorption isotherms and kinetics models are also discussed in this review paper. The factors such as the effect of solution pH, temperature, initial Cr(VI) concentration, adsorbent dosage and other coexisting ions are also briefly discussed. In this review, magnetic polymers reveal good result than other techniques used in water treatment because of its high surface area (surface/volume ratio). It is suggested that these may be used in the future at large-scale water purification. It is also found that the polymer rich with amino groups (polypyrrole and polyaniline) enhanced Cr (VI) removal efficiency. From the results, it is evident that more attention needs to be paid on the industrial application of the technologies which were successful in the laboratory scale. In the future, combination of both copolymers may be the best option for treatment of wastewater.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Akar ST, Yetimoglu Y, Gedikbey T (2009) Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination 244:97–108

    Article  CAS  Google Scholar 

  • Akbal F, Camc S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269:214–222

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  CAS  Google Scholar 

  • Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43:175–205

    Article  CAS  Google Scholar 

  • Ali MEA (2016) Synthesis and adsorption properties of chitosan-CDTA-GO nanocomposite for removal of hexavalent chromium from aqueous solutions. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.09.010

  • Allen SJ, Gan Q, Matthews R, Johnson PA (2003) Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour Technol 88:143–152

    Article  CAS  Google Scholar 

  • Ameen S, Seo H, Akhtar MS, Shik H (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220–228

    Article  CAS  Google Scholar 

  • Amer I, Young DA, Vosloo HCM (2013) Chemical oxidative polymerization of m-phenylenediamine and its derivatives using aluminium triflate as a co-catalyst. Eur Polym J 49(10):3251–3260

    Article  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. J Chem 3:186–201

    CAS  Google Scholar 

  • Asgari M, Anisi H, Mohammadi H, Sadighi S (2014) Designing a commercial scale pressure swing adsorber for hydrogen purification. Pet Coal 56:552–561

    CAS  Google Scholar 

  • Ates M (2013) A review study of (bio) sensor systems based on conducting polymers. Mater Sci Eng C 33:1853–1859

    Article  CAS  Google Scholar 

  • Azizian S, Fallah RN (2010) A new empirical rate equation for adsorption kinetics at solid/solution interface. Appl Surf Sci 256:5153–5156

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615

    Article  CAS  Google Scholar 

  • Ballav N, Maity A, Mishra SB (2012) High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chem Eng J 198–199:536–546

    Article  CAS  Google Scholar 

  • Ballav N, Choi HJ, Mishra SB, Maity A (2014) Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J Ind Eng Chem 20:4085–4093

    Article  CAS  Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  CAS  Google Scholar 

  • Bayazit SS, Kerkez Ö (2014) Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chem Eng Res Des 92:2725–2733

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168:493–504

    Article  CAS  Google Scholar 

  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  CAS  Google Scholar 

  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181–182:323–333

    Article  CAS  Google Scholar 

  • Bhaumik M, Choi HJ, Seopela MP, Mccrindle RI, Maity A (2014a) Highly effective removal of toxic Cr (VI) from wastewater using sulfuric acid-modified avocado seed. Ind Eng Chem Res 53:1214–1224

    Article  CAS  Google Scholar 

  • Bhaumik M, Choi HJ, McCrindle RI, Maity A (2014b) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82

    Article  CAS  Google Scholar 

  • Bhaumik M, McCrindle RI, Maity A (2015) Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chem Eng J 260:716–729

    Article  CAS  Google Scholar 

  • Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interface Sci 470:257–267

    Article  CAS  Google Scholar 

  • Bielefeldt AR, Kowalski K, Summers RS (2009) Bacterial treatment effectiveness of point-of-use ceramic water filters. Water Res 43:3559–3565

    Article  CAS  Google Scholar 

  • Bilal S, Perveen F, Shah AA (2015) Chemical synthesis of polypyrrole doped with dodecyl benzene sulfonic acid. J Sci Innov Res 4:33–42

    Google Scholar 

  • Bisinella F, Módenes AN, Borba CE, Ribeiro C, Espinoza-Quiñones FR, Bergamasco R, Pereira NC (2016) Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem Eng J 284:1328–1341

    Article  CAS  Google Scholar 

  • Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613

    Article  CAS  Google Scholar 

  • Brame J, Li Q, Alvarez PJJ (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22:618–624

    Article  CAS  Google Scholar 

  • Brezoi D (2010) Polypyrrole films prepared by chemical oxidation of pyrrole in aqueous FeCl3 solution. J Sci Arts 1:53–58

    Google Scholar 

  • Brooke R, Cottis P, Talemi P, Fabretto M, Murphy P, Evans D (2017) Recent advances in the synthesis of conducting polymers from the vapour phase. Prog Mater Sci 86:127–146

    Article  CAS  Google Scholar 

  • Chauke VP, Maity A, Chetty A (2015) High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J Mol Liq 211:71–77

    Article  CAS  Google Scholar 

  • Chávez-guajardo AE, Medina-llamas JC, Maqueira L, Andrade CAS, Alves KGB, De Melo CP (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836

    Article  CAS  Google Scholar 

  • Chen J, Hong X, Xie Q, Li D, Zhang Q (2014) Sepiolite fiber oriented-polypyrrole nanofibers for efficient chromium(VI) removal from aqueous solution. J Chem Eng Data 59:2275–2282

    Article  CAS  Google Scholar 

  • Choppala G, Kunhikrishnan A, Seshadri B, Hee J, Bush R, Bolan N (2018) Comparative sorption of chromium species as in fl uenced by pH, surface charge and organic matter content in contaminated soils. J Geochem Explor 184:255–260

    Article  CAS  Google Scholar 

  • Chowdhury P, Viraraghavan T (2009) Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – a review. Sci Total Environ 407:2474–2492

    Article  CAS  Google Scholar 

  • Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10

    Article  CAS  Google Scholar 

  • Das C, Patel P, De S, Dasgupta S (2006) Treatment of tanning effluent using nanofiltration followed by reverse osmosis. Sep Purif Technol 50:291–299

    Article  CAS  Google Scholar 

  • Debnath S, Ballav N, Nyoni H, Maity A, Pillay K (2015) Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B Environ 163:330–342

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  CAS  Google Scholar 

  • Dileepa Chathuranga PK, Priyantha N, Iqbal SS, Mohomed Iqbal MC (2013) Biosorption of Cr(III) and Cr(VI) species from aqueous solution by Cabomba caroliniana: kinetic and equilibrium study. Environ Earth Sci 70:661–671

    Article  CAS  Google Scholar 

  • Doke KM, Khan EM (2017) Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell. Arab J Chem 10:S252–S260

    Article  CAS  Google Scholar 

  • Dou W, Zhou Z, Jiang LM, Jiang A, Huang R, Tian X, Zhang W, Chen D (2017) Sulfate removal from wastewater using ettringite precipitation: magnesium ion inhibition and process optimization. J Environ Manag 196:518–526

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Edebali S, Pehlivan E (2010) Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem Eng J 161:161–166

    Article  CAS  Google Scholar 

  • Elfeky SA, Mahmoud SE, Youssef AF (2017) Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J Adv Res 8:435–443

    Article  CAS  Google Scholar 

  • El-khaiary MI (2008) Least-squares regression of adsorption equilibrium data: comparing the options. J Hazard Mater 158:73–87

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1990) Environmental pollution control alternatives. EPA/625/5-90 /025; EPA/625/4-89/023, Cincinnati, US

    Google Scholar 

  • Eris S, Azizian S (2017) Analysis of adsorption kinetics at solid/solution interface using a hyperbolic tangent model. J Mol Liq 231:523–527

    Article  CAS  Google Scholar 

  • Eslami A, Arai S, Miura M, Mackizadeh MA (2018) Metallogeny of the peridotite-hosted magnetite ores of the Nain ophiolite, Central Iran: implications for Fe concentration processes during multi-episodic serpentinization. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2018.03.020

  • Fan L, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8:937–940

    Article  CAS  Google Scholar 

  • Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou Y, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:34124

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Gao F, Gu H, Wang H, Wang X, Xiang B, Guo Z (2015) Magnetic amine-functionalized polyacrylic acid-nanomagnetite for hexavalent chromium removal from polluted water. RSC Adv 5:60208–60219

    Article  CAS  Google Scholar 

  • Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  • Goh PS, Ng BC, Lau WJ, Ismail AF (2015) Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep Purif Rev 44:216–249

    Article  CAS  Google Scholar 

  • González O, Bayarri B, Aceña J, Pérez S, Barceló D (2016) Treatment technologies for wastewater reuse: fate of contaminants of emerging concern. In: Fatta-Kassinos D et al (eds) Advanced treatment technologies for urban wastewater reuse, The handbook of environmental chemistry, pp 5–38. https://doi.org/10.1007/698_2015_363

    Chapter  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash – a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    Article  CAS  Google Scholar 

  • Haerifar M, Azizian S (2013) An exponential kinetic model for adsorption at solid/solution interface. Chem Eng J 215–216:65–71

    Article  CAS  Google Scholar 

  • Hao J, Meng X, Mulchandani A (2013) Hexavalent chromium removal mechanism using conducting polymers. J Hazard Mater 252–253:99–106

    Google Scholar 

  • Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 484:95–106

    Article  CAS  Google Scholar 

  • Hintermeyer BH, Lacour NA, Padilla AP, Tavani EL (2008) Separation of the chromium (iii) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Lat Am Appl Res 71:63–71

    Google Scholar 

  • Hirth JP, Rice JR (1980) On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A 11:1501–1511

    Article  Google Scholar 

  • Horst MF, Alvarez M, Lassalle VL (2016) Removal of heavy metals from wastewater using magnetic nanocomposites: analysis of the experimental conditions. Sep Sci Technol 51:550–563

    Article  CAS  Google Scholar 

  • Hou T, Kong L, Guo X, Wu Y, Wang F, Wen Y, Yang H (2016) Magnetic ferrous-doped graphene for improving Cr(VI) removal. Mater Res Express 3. https://doi.org/10.1088/2053-1591/3/4/045006

  • Hu L, Dang S, Yang X, Dai J (2012) Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol. Microporous Mesoporous Mater 147:188–193

    Article  CAS  Google Scholar 

  • Hu L, Cai Y, Jiang G (2016) Chemosphere occurrence and speciation of polymeric chromium (III), monomeric chromium (III) and chromium (VI) in environmental samples. Chemosphere 156:14–20

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  • Hutchinson RA (2013) Radical polymerization kinetics. In: Reference module in chemistry, molecular sciences and chemical engineering, pp 1–14. https://doi.org/10.1016/B978-0-12-409547-2.05416-0

    Chapter  Google Scholar 

  • Ilankoon N (2014) Use of iron oxide magnetic nanosorbents for Cr (VI) removal from aqueous solutions: a review. Int J Eng Res Appl 4:55–63

    Google Scholar 

  • Jeppua GP, Clement TP (2012) A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol 129–130:46–53

    Article  CAS  Google Scholar 

  • Jin W, Du H, Zheng S, Zhang Y (2016) Electrochimica acta electrochemical processes for the environmental remediation of toxic Cr (VI): a review industrial fields Cr (VI) discharge/tons. Electrochim Acta 191:1044–1055

    Article  CAS  Google Scholar 

  • Kanchi S (2014) Nanotechnology for water treatment. J Environ Anal Chem 1:10–12

    Google Scholar 

  • Kara A, Demirbel E, Tekin N, Osman B, Beşirli N (2015) Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies. J Hazard Mater 286:612–623

    Article  CAS  Google Scholar 

  • Karthik R, Meenakshi S (2014) Removal of hexavalent chromium ions using polyaniline/silica gel composite. J Water Process Eng 1:37–45

    Article  Google Scholar 

  • Kausaite-minkstimiene A, Mazeiko V, Ramanaviciene A (2015) Evaluation of err56chemical synthesis of polypyrrole particles. Colloids Surfaces A Physicochem Eng Asp 483:224–231

    Article  CAS  Google Scholar 

  • Kera NH, Bhaumik M, Ballav N, Pillay K, Ray SS, Maity A (2016) Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite. J Colloid Interface Sci 476:144–157

    Article  CAS  Google Scholar 

  • Kera NH, Bhaumik M, Pillay K, Ray SS, Maity A (2017) Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J Colloid Interface Sci 503:214–228

    Article  CAS  Google Scholar 

  • Khobragade PS, Hansora DP, Naik JB, Chatterjee A (2016) Flame retarding performance of elastomeric nanocomposites: a review. Polym Degrad Stab 130:194–244

    Article  CAS  Google Scholar 

  • Kim J, Van Der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    Article  CAS  Google Scholar 

  • Kong Y, Li W, Wang Z, Yao C, Tao Y (2013) Electrochemistry communications electrosorption behavior of copper ions with poly (mphenylenediamine) paper electrode. Electrochem Commun 26:59–62

    Article  CAS  Google Scholar 

  • Kotasâ J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  • Krishnani KK, Srinives S, Mohapatra BC, Boddu VM, Hao J, Meng X, Mulchandani A (2013) Hexavalent chromium removal mechanism using conducting polymers. J Hazard Mater 252–253:99–106

    Article  CAS  Google Scholar 

  • Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  • Kumar P, Gill K, Kumar S, Ganguly SK, Jain SL (2015a) Magnetic Fe3O4@MgAl–LDH composite grafted with cobalt phthalocyanine as an efficient heterogeneous catalyst for the oxidation of mercaptans. J Mol Catal A Chem 401:48–54

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Yadav BC (2015b) Conducting polymers: synthesis, properties and applications. Int Adv Res J Sci Eng Technol 2:110–124

    Google Scholar 

  • Kumar V, Kim K-H, Park J-W, Hong J, Kumar S (2017) Review Graphene and its nanocomposites as a platform for environmental applications. Chem Eng J 315:210–232

    Article  CAS  Google Scholar 

  • Kunhikrishnan A, Choppala G, Seshadri B, Wijesekara H, Bolan NS, Mbene K, Kim W (2017) Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As (V) and Cr (VI) in contaminated soils. J Environ Manag 186:183–191

    Article  CAS  Google Scholar 

  • Lange U, Roznyatovskaya NV, Mirsky VM (2008) Review article conducting polymers in chemical sensors and arrays. Anal Chim Acta 4:1–26

    Article  CAS  Google Scholar 

  • Li X, Duan W, Huang M, Rodriguez LNJ (2005) Electrocopolymerization of meta -phenylenediamine and ortho -phenetidine. React Funct Polym 62:261–270

    Article  CAS  Google Scholar 

  • Li G, Jiang Y, Huang K, Ding P, Chen J (2008a) Preparation and properties of magnetite Fe3O4-chitosan nanoparticles. J Alloys Compd 466:451–456

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008b) Antimicrobial nanomaterials for water disinfection and microbial control: potentiaapplications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Li M, Wang Q, Shi X, Hornak LA, Wu N (2011) Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065

    Article  CAS  Google Scholar 

  • Li S, Lu X, Xue Y, Lei J, Zheng T, Wang C (2012) Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS One 7:1–7

    Google Scholar 

  • Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Colloids Surf B: Biointerfaces 107:76–83

    Article  CAS  Google Scholar 

  • Li F, Jiang X, Zhao J, Zhang S (2015a) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Article  CAS  Google Scholar 

  • Li Z, Li T, An L, Fu P, Gao C, Zhang Z (2015b) Highly efficient chromium (VI) adsorption with nanofibrous filter paper prepared through electrospinning chitosan/polymethylmethacrylate composite. Carbohydr Polym 137:119–126

    Article  CAS  Google Scholar 

  • Liu Y, Liu Y (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242

    Article  CAS  Google Scholar 

  • Liu B, Zhang W, Yang F, Feng H, Yang X (2011) Facile method for synthesis of Fe3O4@Polymer microspheres and their application as magnetic support for loading metal nanoparticles. J Phys Chem C 115:15875–15884

    Article  CAS  Google Scholar 

  • Luo C, Wei R (2013) Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem Eng J 225:406–415

    Article  CAS  Google Scholar 

  • Luo C, Tian Z, Yang B, Zhang L, Yan S (2013) Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem Eng J 234:266–275

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian J, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • M’Bareck CO, Nguyen QT, Alexandre S, Zimmerlin I (2006) Fabrication of ion-exchange ultrafiltration membranes for water treatment. I. Semi-interpenetrating polymer networks of polysulfone and poly(acrylic acid). J Membr Sci 278:10–18

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Massoumi B (2012) Effect of sodium montmorillonite nanoclay on the water absorbency and cationic dye removal of carrageenan-based nanocomposite superabsorbents. J Polym Res 19:9947

    Article  CAS  Google Scholar 

  • Mahmud HNME, Huq AO, Yahya RB (2016) Removal of heavy metal ions from wastewater/aqueous solution by polypyrrole-based adsorbents: a Review. RSC Adv 6:14778–14791

    Article  CAS  Google Scholar 

  • Maktedar SS, Mehetre SS, Singh M, Kale RK (2014) Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason Sonochem 21:1407–1416

    Article  CAS  Google Scholar 

  • Marczewski AW (2010) Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl Surf Sci 256:5145–5152

    Article  CAS  Google Scholar 

  • Marczewski AW, Winter S, Sternik D (2010) Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes – mesoporous carbons. Appl Surf Sci 256:5164–5170

    Article  CAS  Google Scholar 

  • Milonjić SK (2007) Short communication a consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72:1363–1367

    Article  CAS  Google Scholar 

  • Mitra P, Sarkar D, Chakrabarti S, Dutta BK (2011) Reduction of hexa-valent chromium with zero-valent iron: batch kinetic studies and rate model. Chem Eng J 171:54–60

    Article  CAS  Google Scholar 

  • Miyake Y, Ishida H, Tanaka S, Kolev SD (2013) Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag (I) to mesoporous silica microspheres functionalized with thiol groups. Chem Eng J 218:350–357

    Article  CAS  Google Scholar 

  • Monama GR, Mdluli SB, Mashao G, Makhafola MD, Ramohlola KE, Molapo KM, Hato MJ, Makgopa K, Iwuoha EI, Modibane KD (2018) Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew Energy 119:62–72

    Article  CAS  Google Scholar 

  • Montagnaro F, Balsamo M (2014) Deeper insights into fractal concepts applied to liquid-phase adsorption dynamics. Fuel Process Technol 128:412–416

    Article  CAS  Google Scholar 

  • Mthombeni NH, Onyango MS, Aoyi O (2015a) Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. J Taiwan Inst Chem Eng 50:242–251

    Article  CAS  Google Scholar 

  • Mthombeni N, Mbakop S, Onyango M (2015b) Magnetic zeolite-polymer composite as an adsorbent for the remediation of wastewaters containing vanadium. Int J Environ Sci Dev 6:602–605

    Article  CAS  Google Scholar 

  • Narayan R (2010) Use of nanomaterials in water purification. Mater Today 13:44–46

    Article  CAS  Google Scholar 

  • Ochubiojo M, Chinwude I, Ibanga E, Ifianyi S (2012) Nanotechnology in drug delivery. In: Recent advances in novel drug carrier systems. https://doi.org/10.5772/51384

    Chapter  Google Scholar 

  • Ofomaja AE (2010) Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresour Technol 101:5868–5876

    Article  CAS  Google Scholar 

  • Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr(VI) in water. J Hazard Mater 147:845–851

    Article  CAS  Google Scholar 

  • Patel HA, SomanI RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29:133–145

    Article  CAS  Google Scholar 

  • Patra RC, Malik S, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–1863

    Article  CAS  Google Scholar 

  • Pattnaik BK, Equeenuddin SM (2016) Potentially toxic metal contamination and enzyme activities in soil around chromite mines at Sukinda Ultramafic Complex, India. J Geochem Explor 168:127–136

    Article  CAS  Google Scholar 

  • Pillai SK, Ray SS (2012) Chitosan-based nanocomposites. Nat Polym 2:33–68

    Article  Google Scholar 

  • Pitsikalls M (2013) Ionic polymerization. In: Reference module in chemistry, molecular sciences and chemical engineering, pp 1–19. https://doi.org/10.1016/B978-0-12-409547-2.05419-6

    Chapter  Google Scholar 

  • Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interf Sci 152:2–13

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Rad SAM, Mirbagheri SA, Mohammadi T (2009) Using reverse osmosis membrane for chromium removal from aqueous solution. World Acad Sci Eng Technol 3:505–509

    Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  • Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly(3-aminobenzoic acid). Electrochim Acta 246:1174–1182

    Article  CAS  Google Scholar 

  • Ramohlola KE, Monana GR, Hato MJ, Modibane KD, Molapo KM, Masikini M, Mduli SB, Iwuoha EI (2018) Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos Part B Eng 137:129–139

    Article  CAS  Google Scholar 

  • Rasmussen B, Muhling JR (2018) Making magnetite late again: evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Res 306:64–93

    Article  CAS  Google Scholar 

  • Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface:1–21. https://doi.org/10.1098/rsif.2010.0120

  • Salam MA (2017) Preparation and characterization of chitin/magnetite/multiwalled carbon nanotubes magnetic nanocomposite for toxic hexavalent chromium removal from solution. J Mol Liq 233:197–202

    Article  CAS  Google Scholar 

  • Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  Google Scholar 

  • Shekari H, Sayadi MH, Rezaei MR, Allahresani A (2017) Synthesis of nickel ferrite/titanium oxide magnetic nanocomposite and its use to remove hexavalent chromium from aqueous solutions. Surf Interfaces 8:199–205

    Article  CAS  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 10:3223–3230

    Article  CAS  Google Scholar 

  • Shirsath SR, Hage AP, Zhou M, Sonawane SH, Ashokkumar M (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination 281:429–437

    Article  CAS  Google Scholar 

  • Siracusa V, Dalla M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon N Y 91:122–143

    Article  CAS  Google Scholar 

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  • Soleimani M, Siahpoosh ZH (2015) Ghezeljeh nanoclay as a new natural adsorbent for the removal of copper and mercury ions: equilibrium, kinetics and thermodynamics studies. Chin J Chem Eng 23:1819–1833

    Article  CAS  Google Scholar 

  • Soleimani M, Siahpoosh ZH (2016) Journal of the Taiwan Institute of Chemical Engineers Determination of Cu (II) in water and food samples by Na+-cloisite nanoclay as a new adsorbent: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 59:413–423

    Article  CAS  Google Scholar 

  • Sounthararajah DP, Loganathan P, Kandasamy J, Vigneswaran S (2015) Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J Hazard Mater 287:306–316

    Article  CAS  Google Scholar 

  • Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 186:921–931

    Article  CAS  Google Scholar 

  • Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng 2011:1–17

    Article  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    Article  CAS  Google Scholar 

  • Ssneha B (2014) Application of nanotechnology in dentistry. Res J Pharm Technol 7:81–83

    Google Scholar 

  • Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31

    Article  CAS  Google Scholar 

  • Stenger-Smith JD (1998) Intrinsically electrically conducting polymers. synthesis, characterization, their applications. Proq Polym Sci 23:57–79

    Article  CAS  Google Scholar 

  • Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183

    Article  CAS  Google Scholar 

  • Sun X, Yang L, Xing H, Zhao J, Li X, Huang Y, Liu H (2015) Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J 234:1–10

    Google Scholar 

  • Tan Y, Ghandi K (2013) Kinetics and mechanism of pyrrole chemical polymerization. Synth Met 175:183–191

    Article  CAS  Google Scholar 

  • Tang L, Fang Y, Pang Y, Zeng G, Wang J, Zhou Y, Deng Y, Yang G, Cai Y, Chen J (2010) Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline–magnetic mesoporous silica composite. Chem Eng J 254:302–1375

    Article  CAS  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çelik A (2012) Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution. Chem Eng J 197:379–386

    Article  CAS  Google Scholar 

  • Tran VS, Hao H, Guo W, Zhang J, Liang S, Ton-that C (2015) Bioresource technology typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour Technol 182:353–363

    Article  CAS  Google Scholar 

  • Tripathi S, Tabor RF (2016) Modeling two-rate adsorption kinetics: two-site, two-species, bilayer and rearrangement and rearrangement adsorption processes. J Colloid Interface Sci 476:119–131

    Article  CAS  Google Scholar 

  • Tuan TN, Chung S, Lee JK, Lee J (2015) Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide. Curr Appl Phys 15:1397–1401

    Article  Google Scholar 

  • Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Process Eng 21:84–95

    Article  Google Scholar 

  • Vellaichamy B, Periakaruppan P, Nagulan B (2017) Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis. ACS Sustain Chem Eng 5:9313–9324

    Article  CAS  Google Scholar 

  • Vi G, Belton GR (1976) Langmuir adsorption, the Gibbs adsorption isotherm, and interfacial kinetics in liquid metal systems. Metall Trans B 7:35–42

    Article  Google Scholar 

  • Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Wang J, Du X, Xiao F, Li J (2010) High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synth Met 160:1826–1831

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Wang J, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. Synth Met 161:1141–1144

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Liu X, Yang M, Ren X (2012a) Micron-sized magnetic polymer microspheres for adsorption and separation of Cr(VI) from aqueous solution. Chin J Chem Eng 20:105–110

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Liu X, Ren X, Yang M (2012b) High-capacity adsorption of hexavalent chromium from aqueous solution using magnetic microspheres by surface dendrimer graft modification. J Colloid Interface Sci 375:160–166

    Article  CAS  Google Scholar 

  • Wang Y, Zou B, Gao T, Wu X, Lou S, Zhou S (2012c) Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties. J Mater Chem 22:9034

    Article  CAS  Google Scholar 

  • Wang J, Pan K, He Q, Cao B (2013) Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J Hazard Mater 244–245:121–129

    Article  CAS  Google Scholar 

  • Wang J, Zhang K, Zhao L (2014) Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr (VI): effect of protonic acids. Chem Eng J 239:123–131

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Chen X, Leng L, Wang H, Li H, Zeng G (2015a) Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606

    Article  CAS  Google Scholar 

  • Wang K, Qiu G, Cao H, Jin R (2015b) Removal of chromium(VI) from aqueous solutions using Fe3O4 magnetic polymer microspheres functionalized with amino groups. Materials (Basel) 8:8378–8391

    Article  CAS  Google Scholar 

  • Wang W, Cai K, Wu X, Shao X, Yang X (2017) A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI). J Alloys Compd 722:532–543. https://doi.org/10.1016/j.jallcom.2017.06.069

    Article  CAS  Google Scholar 

  • Ward LA, Holwell DA, Barry TL, Blanks DE, Graham SD (2018) The use of magnetite as a geochemical indicator in the exploration for magmatic Ni-Cu-PGE sulfide deposits: a case study from Munali, Zambia. J Geochem Explor 188:172–184

    Article  CAS  Google Scholar 

  • Worch E (2012) Adsorption technology in water treatment fundamentals, processes, and modeling. © 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. ISBN 978-3-11-024022-1

    Book  Google Scholar 

  • Wu F, Tseng R, Juang R (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    Article  CAS  Google Scholar 

  • Wu H, Tang B, Wu P (2014a) Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94–102

    Article  CAS  Google Scholar 

  • Wu JJ, Lee HW, You JH, Kau YC, Liu SJ (2014b) Adsorption of silver ions on polypyrrole embedded electrospun nanofibrous polyethersulfone membranes. J Colloid Interface Sci 420:145–151

    Article  CAS  Google Scholar 

  • Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yan F, Chub Y, Zhang K, Zhang F, Bhandari N, Ruana G, Dai Z, Liu Y, Zhang Z, Kana AT, Tomson MB (2015) Determination of adsorption isotherm parameters with correlated errors by measurement error models. Chem Eng J 281:921–930

    Article  CAS  Google Scholar 

  • Yao C, Chen T (2017) A film-diffusion-based adsorption kinetic equation and its application. Chem Eng Res Des 119:87–92

    Article  CAS  Google Scholar 

  • Yoon Y, Park WK, Hwang TM, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J Hazard Mater 304:196–204

    Article  CAS  Google Scholar 

  • Zare EN, Lakouraj MM, Ramezani A (2015) Effective adsorption of heavy metal cations by superparamagnetic poly(aniline-co-m- phenylenediamine)@Fe3O4 nanocomposite. Adv Polym Technol 34:1–11

    Article  CAS  Google Scholar 

  • Zhang H, Huang F, Liu D-L, Shi P (2015) Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide. Chin Chem Lett 26:1137–1143

    Article  CAS  Google Scholar 

  • Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39

    Article  Google Scholar 

  • Zhang L, Liu J, Guo X (2017) Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. J Environ Sci 64:335–344

    Article  Google Scholar 

  • Zhao YG, Shen HY, Pan SD, Hu MQ (2010) Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(VI) in wastewater. J Hazard Mater 182:295–302

    Article  CAS  Google Scholar 

  • Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  • Zhao J, Li Z, Wang J, Li Q, Wang X (2015) Capsular polypyrrole hollow nanofibers: an efficient recyclable adsorbent for hexavalent chromium removal. J Mater Chem A 3:15124–15132

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang L, Cheng Z (2015) Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq 212:739–762

    Article  CAS  Google Scholar 

  • Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Hoa TC, Hoppera J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467

    Article  CAS  Google Scholar 

  • Ziadan KM (2012) Conducting polymers application. In: New polymers for special applications. InTech, pp 3–24. https://doi.org/10.5772/76437

  • Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KDM and MJH would like to thank the National Research Foundation (NRF) (Grant Nos. 99166 and 99278), University of Limpopo (Research Development Grants R202 and R232) and Sasol Inzalo Foundation, South Africa, for the financial support.

Conflict of Interest

We declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mpitloane J. Hato , Kwena D. Modibane or Katlego Makgopa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hato, M.J. et al. (2019). Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions. In: Naushad, M., Rajendran, S., Gracia, F. (eds) Advanced Nanostructured Materials for Environmental Remediation. Environmental Chemistry for a Sustainable World, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-04477-0_8

Download citation

Publish with us

Policies and ethics