Skip to main content

Nanostructured Materials for Li-Ion Battery Applications

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 23))

Abstract

As a consequence to the remarkable development of the science and technology, an exponential demand for energy leads to the exploitation of nonrenewable energy sources including fossil fuel paves the way to stern environmental crises. Global warming is one of the principal threats, due to the accumulation of greenhouse gases, resulting from the use of fossil fuels. Because of limited availability, the fossil fuels have been rapidly exhausting, compelling researchers to accelerate the search for environment-friendly, renewable, and sustainable energy sources like the solar cell, wind, and electrochemical energy storage systems. Electrochemical energy storage systems (EESs), more specifically rechargeable batteries and supercapacitors being efficient alternatives, have attracted tremendous attention. Rechargeable batteries not only serve as energy storage devices but also capable of providing the dispatchable energy for transportation, i.e., electrical vehicles (EVs and hybrid EVs).

Although LIBs possess energy densities higher than those of the conventional batteries, their lower power densities and poor cycling lives are critical challenges for their applications in electric vehicles (EVs) and grid-scale storage. The present book chapter is an attempt to provide a detailed description of several aspects of the development of Li-ion battery, i.e., preferred electrode (cathode as well as the anode) materials, separators, electrolyte media, and their additives with associated challenges. This chapter spotlights the mechanism for Li-ion storage (lithiation/delithiation processes) with various vital parameters that determine the overall performance of a battery including the shape and size of electrode materials. The recent advancement in designing several nanostructures for high-energy electrodes are highlighted in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Download references

Acknowledgments

We acknowledge the Department of Science & Technology-Science, Engineering Research Board (DST-SERB) and the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusha V. Shelke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Dwivedi, P.K., Yadav, P., Shelke, M.V. (2019). Nanostructured Materials for Li-Ion Battery Applications. In: Rajendran, S., Naushad, M., Raju, K., Boukherroub, R. (eds) Emerging Nanostructured Materials for Energy and Environmental Science. Environmental Chemistry for a Sustainable World, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-04474-9_3

Download citation

Publish with us

Policies and ethics