Skip to main content

Biharmonic Monogenic Functions and Biharmonic Boundary Value Problems

  • Conference paper
  • First Online:
Book cover Analysis, Probability, Applications, and Computation

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

We consider a commutative algebra B over the field of complex numbers with a basis {e 1, e 2} satisfying the conditions \((e_1^2+e_2^2)^2=0\), \(e_1^2+e_2^2\ne 0\). We consider a Schwarz-type boundary value problem for “analytic” B-valued functions in a simply connected domain. This problem is associated with BVPs for biharmonic functions. Using a hypercomplex analog of the Cauchy type integral, we reduce these BVPs to a system of integral equations on the real axes. We establish sufficient conditions under which this system has the Fredholm property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Douglis, A function-theoretic approach to elliptic systems of equations in two variables. Commun. Pure Appl. Math. 6(2), 259–289 (1953)

    Article  MathSciNet  Google Scholar 

  2. S.V. Grishchuk, S.A. Plaksa, Monogenic functions in a biharmonic algebra (in Russian). Ukr. Mat. Zh. 61(12), 1587–1596 (2009). English transl. (Springer), in Ukr. Math. J. 61(12), 1865–1876 (2009)

    Article  MathSciNet  Google Scholar 

  3. S.V. Gryshchuk, One-dimensionality of the kernel of the system of Fredholm integral equations for a homogeneous biharmonic problem (Ukrainian. English summary). Zb. Pr. Inst. Mat. NAN Ukr. 14(1), 128–139 (2017)

    Google Scholar 

  4. S.V. Gryshchuk, S.A. Plaksa, Basic properties of monogenic functions in a biharmonic plane, in Complex Analysis and Dynamical Systems V, ed. by M.L. Agranovskii, M. Ben-Artzi, G. Galloway, L. Karp, V. Maz’ya. Contemporary Mathematics, vol. 591 (American Mathematical Society, Providence, 2013), pp. 127–134

    Google Scholar 

  5. S.V. Gryshchuk, S.A. Plaksa, Schwartz-type integrals in a biharmonic plane. Int. J. Pure Appl. Math. 83(1), 193–211 (2013)

    Article  Google Scholar 

  6. S.V. Gryshchuk, S.A. Plaksa, Monogenic functions in the biharmonic boundary value problem. Math. Methods Appl. Sci. 39(11), 2939–2952 (2016)

    Article  MathSciNet  Google Scholar 

  7. L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, 3rd edn (Interscience publishers, Inc., New York, 1964). Transl. by Benser, C.D. from Russian

    Google Scholar 

  8. V.F. Kovalev, I.P. Mel’nichenko, Biharmonic functions on the biharmonic plane (in Russian). Rep. Acad. Sci. USSR A 8, 25–27 (1981)

    MATH  Google Scholar 

  9. A.I. Lurie, Theory of Elasticity (Springer, Berlin, 2005). Engl. transl. by A. Belyaev

    Book  Google Scholar 

  10. I.P. Mel’nichenko, Biharmonic bases in algebras of the second rank (in Russian). Ukr. Mat. Zh. 38(2), 224–226 (1986). English transl. (Springer) in Ukr. Math. J. 38(2), 252–254 (1986)

    Article  MathSciNet  Google Scholar 

  11. S.G. Mikhlin, The plane problem of the theory of elasticity (Russian). Trans. Inst. of seismology, Acad. Sci. USSR. no. 65 (USSR Academy of Sciences Publishing House, Moscow, 1935)

    Google Scholar 

  12. S.G. Mikhlin, N.F. Morozov, M.V. Paukshto, The Integral Equations of the Theory of Elasticity. TEUBNER-TEXTE zur Mathematik Band, vol. 135. Transl. from Russ. by Rainer Radok, ed. by H. Gajewski (Springer, Stuttgart, 1995)

    Google Scholar 

  13. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity. Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending (Noordhoff International Publishing, Leiden, 1977). English transl. from the 4th Russian edition by R.M. Radok

    Google Scholar 

  14. L. Sobrero, Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata. Ricerche di Ingegneria. 13(2), 255–264 (1934)

    MathSciNet  MATH  Google Scholar 

  15. V.I. Smirnov, A Course of Higher Mathematics, vol. 3, Part 2 (Pergamon Press, Oxford, 1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gryshchuk, S.V., Plaksa, S.A. (2019). Biharmonic Monogenic Functions and Biharmonic Boundary Value Problems. In: Lindahl, K., Lindström, T., Rodino, L., Toft, J., Wahlberg, P. (eds) Analysis, Probability, Applications, and Computation. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04459-6_14

Download citation

Publish with us

Policies and ethics