Skip to main content

Inelastic Maxwell Models for Dilute Granular Gases

  • Chapter
  • First Online:
  • 540 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Inelastic Maxwell models for dilute granular gases are introduced in this chapter. As with ordinary gases, in these models the collision rate of two colliding particles is independent of their relative velocity. This simplification allows us to exactly evaluate the moments of the Boltzmann collision operator. Consequently, in contrast to the previous chapters where the analytic results for hard spheres have been approximate, the use of Maxwell models opens up the possibility of obtaining the exact forms of the Navier–Stokes transport coefficients for mono- and multicomponent granular gases as well as the rheological properties in sheared granular systems. The purpose of this chapter then is to offer a brief survey on hydrodynamic properties derived in the context of inelastic Maxwell models for systems close to the homogeneous cooling state and for far from equilibrium situations. The results obtained for inelastic Maxwell models will be compared with the theoretical results derived for inelastic hard spheres using analytic approximate methods and the DSMC method. Finally, a surprising “nonequilibrium phase transition” for a sheared binary mixture in the tracer limit will be identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that in this section the shear rate a has been scaled with respect to the collision frequency \(\widetilde{\nu }_\text {M}\) of the vanilla Maxwell model.

References

  1. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  2. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  3. Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  4. Ernst, M.H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. Truesdell, C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)

    Google Scholar 

  6. Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  7. Santos, A.: Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Cont. Mech. Therm. 21, 361–387 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ben-Naim, E., Krapivsky, P.L.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)

    Article  ADS  Google Scholar 

  9. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MathSciNet  Google Scholar 

  10. Ernst, M.H., Brito, R.: High-energy tails for inelastic Maxwell models. Europhys. Lett. 58, 182–187 (2002)

    Article  ADS  Google Scholar 

  11. Kohlstedt, K., Snezhko, A., Sapozhnikov, M.V., Aranson, I.S., Ben-Naim, E.: Velocity distributions of granular gases with drag and with long-range interactions. Phys. Rev. Lett. 95, 068001 (2005)

    Article  ADS  Google Scholar 

  12. Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with overpopulated high energy tails. J. Stat. Phys. 109, 407–432 (2002)

    Article  ADS  Google Scholar 

  13. Baldassarri, A., Marconi, U.M.B., Puglisi, A.: Influence of correlations of the velocity statistics of scalar granular gases. Europhys. Lett. 58, 14–20 (2002)

    Article  ADS  Google Scholar 

  14. Krapivsky, P.L., Ben-Naim, E.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147–L152 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Krapivsky, P.L., Ben-Naim, E.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011309 (2002)

    Article  ADS  Google Scholar 

  16. Ernst, M.H., Brito, R.: Driven inelastic Maxwell models with high energy tails. Phys. Rev. E (R) 65, 040301 (2002)

    Article  ADS  Google Scholar 

  17. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)

    Article  MathSciNet  Google Scholar 

  18. Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–416 (2003)

    Article  MathSciNet  Google Scholar 

  19. Ernst, M.H., Trizac, E., Barrat, A.: The rich behaviour of the Boltzmann equation for dissipative gases. Europhys. Lett. 76, 56–62 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Barrat, A., Trizac, E., Ernst, M.H.: Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases. J. Phys. A Math. Theor. 40, 4057–4076 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Carrillo, J.A., Cercignani, C., Gamba, I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E 62, 7700–7707 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cercignani, C.: Shear flow of a granular material. J. Stat. Phys. 102, 1407–1415 (2001)

    Article  MathSciNet  Google Scholar 

  23. Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Stat. Phys. 106, 743–773 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Bolley, F., Carrillo, J.A.: Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys. 276, 287–314 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Santos, A.: Transport coefficients of \(d\)-dimensional inelastic Maxwell models. Physica A 321, 442–466 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Garzó, V., Santos, A.: Third and fourth degree collisional moments for inelastic Maxwell models. J. Phys. A Math. Theor. 40, 14927–14943 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Santos, A., Garzó, V.: Collisional rates for the inelastic Maxwell model: applications to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state. Granular Matter 14, 105–110 (2012)

    Article  Google Scholar 

  28. Santos, A., Ernst, M.H.: Exact steady-state solution of the Boltzmann equation: a driven one-dimensional inelastic maxwell gas. Phys. Rev. E 68, 011305 (2003)

    Article  ADS  Google Scholar 

  29. Ben-Naim, E., Krapivsky, P.L.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011309 (2002)

    Article  ADS  Google Scholar 

  30. Ben-Naim, E., Krapivsky, P.L.: The inelastic Maxwell model. In: Pöschel, T., Brilliantov, N.V. (eds.) Granular Gas Dynamics. Lectures Notes in Physics, vol. 624, pp. 65–94. Springer (2003)

    Google Scholar 

  31. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  32. Garzó, V., Santos, A.: Hydrodynamics of inelastic Maxwell models. Math. Model. Nat. Phenom. 6, 37–76 (2011)

    Article  MathSciNet  Google Scholar 

  33. Brey, J.J., García de Soria, M.I., Maynar, P.: Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E 82, 021303 (2010)

    Google Scholar 

  34. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  35. Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996)

    Article  ADS  Google Scholar 

  36. Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)

    Article  ADS  Google Scholar 

  37. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and heated case. Granular Matter 1, 57–64 (1998)

    Article  Google Scholar 

  38. Garzó, V.: Nonlinear transport in inelastic Maxwell mixtures under simple shear flow. J. Stat. Phys. 112, 657–683 (2003)

    Article  MathSciNet  Google Scholar 

  39. Garzó, V., Astillero, A.: Transport coefficients for inelastic Maxwell mixtures. J. Stat. Phys. 118, 935–971 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  40. Garzó, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids. 14, 1476–1490 (2002)

    Article  ADS  Google Scholar 

  41. Garzó, V., Dufty, J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706–5713 (1999)

    Article  ADS  Google Scholar 

  42. Sela, N., Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J. Fluid Mech. 361, 41–74 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182, 130–136 (2008)

    Article  Google Scholar 

  44. Khalil, N., Garzó, V., Santos, A.: Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases. Phys. Rev. E 89, 052201 (2014)

    Article  ADS  Google Scholar 

  45. McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)

    Google Scholar 

  46. Santos, A., Brey, J.J., Dufty, J.W.: Divergence of the Chapman-Enskog expansion. Phys. Rev. Lett. 56, 1571–1574 (1986)

    Article  ADS  Google Scholar 

  47. Santos, A.: Does the Chapman–Enskog expansion for sheared granular gases converge? Phys. Rev. Lett. 100, 078003 (2008)

    Google Scholar 

  48. Garzó, V., Trizac, E.: Rheological properties for inelastic Maxwell mixtures under shear flow. J. Non-Newtonian Fluid Mech. 165, 932–940 (2010)

    Article  Google Scholar 

  49. Montanero, J.M., Garzó, V.: Rheological properties in a low-density granular mixture. Phys. A 310, 17–38 (2002)

    Article  Google Scholar 

  50. Santos, A., Garzó, V.: Simple shear flow in inelastic Maxwell models. J. Stat. Mech. P08021 (2007)

    Google Scholar 

  51. Santos, A., Garzó, V., Vega Reyes, F.: An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J. Spec. Top. 179, 141–156 (2009)

    Article  Google Scholar 

  52. Garzó, V.: Shear-rate dependent transport coefficients for inelastic Maxwell models. J. Phys. A Math. Theor. 40, 10729–10757 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. Garzó, V., Trizac, E.: Generalized transport coefficients for inelastic Maxwell mixtures under shear flow. Phys. Rev. E 92, 052202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Marconi, U.M.B., Puglisi, A.: Mean-field model of free-cooling inelastic mixtures. Phys. Rev. E 65, 051305 (2002)

    Article  ADS  Google Scholar 

  55. Marconi, U.M.B., Puglisi, A.: Steady-state properties of a mean-field model of driven inelastic mixtures. Phys. Rev. E 66, 011301 (2002)

    Article  ADS  Google Scholar 

  56. Ben-Naim, E., Krapivsky, P.L.: Impurity in a Maxwellian unforced granular fluid. Eur. Phys. J. E 8, 507–515 (2002)

    Article  Google Scholar 

  57. Garzó, V., Trizac, E.: Non-equilibrium phase transition in a sheared granular mixture. Europhys. Lett. 94, 50009 (2011)

    Article  ADS  Google Scholar 

  58. Garzó, V., Trizac, E.: Impurity in a sheared inelastic Maxwell gas. Phys. Rev. E 85, 011302 (2012)

    Article  ADS  Google Scholar 

  59. Garzó, V., Trizac, E.: Tracer diffusion coefficients in a sheared inelastic Maxwell gas. J. Stat. Mech. 073206 (2016)

    Google Scholar 

  60. Stanley, H.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)

    Google Scholar 

  61. Garzó, V., Trizac, E.: Dissipative homogeneous Maxwell mixtures: ordering transition in the tracer limit. Granular Matter 14, 99–104 (2012)

    Article  Google Scholar 

  62. Marín, C., Santos, A., Garzó, V.: Non-equilibrium phase transition in a binary mixture. Europhys. Lett. 33, 599–604 (1996)

    Article  ADS  Google Scholar 

  63. Garzó, V., Khalil, N., Trizac, E.: Anomalous transport of impurities in inelastic Maxwell gases. Eur. Phys. J. E 38, 16 (2015)

    Article  Google Scholar 

  64. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  65. Santos, A., Dufty, J.W.: Critical behavior of a heavy particle in a granular fluid. Phys. Rev. Lett. 86, 4823–4826 (2001)

    Article  ADS  Google Scholar 

  66. Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó .

Appendix A

Appendix A

Some of the collisional moments of the Boltzmann collision operator of IMM needed to achieve the Navier–Stokes transport coefficients for mono- and multicomponent granular gases are evaluated in this Appendix. Let us consider the general collisional integral

$$\begin{aligned} I[\psi (\mathbf {V})]=\int \mathrm{d}\mathbf {v}\; \psi (\mathbf {v}) J_\text {IMM}[\mathbf {v}|f,f], \end{aligned}$$
(9.94)

where \(J_\text {IMM}[f,f]\) is defined by Eq. (9.1) for monocomponent gases. Therefore, Eq. (9.94) can be more explicitly written as

$$\begin{aligned} I[\psi (\mathbf {V}_1)]=\frac{\nu _\text {M}}{n S_d} \int \mathrm{d}\mathbf {v}_1 \int \mathrm{d}\mathbf{v}_{2}\int \mathrm{d}\widehat{\varvec{\sigma }} \left[ \alpha ^{-1}f(\mathbf{v}_{1}'')f(\mathbf{v}_{2}'')\psi (\mathbf {V}_1)- f(\mathbf{v}_{1})f(\mathbf{v}_{2})\psi (\mathbf {V}_1)\right] . \end{aligned}$$
(9.95)

As we did in Appendix A of Chap. 1, we again change variables to integrate over \(\mathbf {v}_1''\) and \(\mathbf {v}_2''\) instead of \(\mathbf {v}_1\) and \(\mathbf {v}_2\) in the first integral on the right-hand side of Eq. (9.95). Since \(\mathrm{d}\mathbf {v}_1 \mathrm{d}\mathbf {v}_2=\alpha \mathrm{d}\mathbf {v}_1'' \mathrm{d}\mathbf {v}_2''\), Eq. (9.95) can be rewritten as

$$\begin{aligned} I[\psi (\mathbf {V}_1)]=\frac{\nu _\text {M}}{n S_d} \int \mathrm{d}\mathbf {v}_1 \int \mathrm{d}\mathbf{v}_{2}f(\mathbf{v}_{1})f(\mathbf{v}_{2})\int \mathrm{d}\widehat{\varvec{\sigma }}\left[ \psi (\mathbf {V}_1')-\psi (\mathbf {V}_1)\right] , \end{aligned}$$
(9.96)

where

$$\begin{aligned} \mathbf {V}_1'=\mathbf {V}_1-\frac{1}{2}(1+\alpha )(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\widehat{\varvec{\sigma }}. \end{aligned}$$
(9.97)

Let us particularize Eq. (9.96) to \(\psi (\mathbf {V})=m \mathbf {V}\mathbf {V}\). The scattering rule (9.97) yields

$$\begin{aligned} V_{1i}'V_{1j}'-V_{1i}V_{1j}=\frac{1+\alpha }{2}(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12}) \left[ \frac{1+\alpha }{2}(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\widehat{\sigma }_i\widehat{\sigma }_j-\left( V_{1i}\widehat{\sigma }_j +V_{1j}\widehat{\sigma }_i\right) \right] . \end{aligned}$$
(9.98)

To perform the angular integrals, we require the results

$$\begin{aligned} \int \mathrm{d}\widehat{\varvec{\sigma }} (\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})^{2k+1}\widehat{\sigma }_i= \widetilde{B}_{k+1} g_{12}^{2k}g_{12,i}, \end{aligned}$$
(9.99)
$$\begin{aligned} \int \mathrm{d}\widehat{\varvec{\sigma }} (\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})^{2k}\widehat{\sigma }_i\widehat{\sigma }_j=\frac{\widetilde{B}_k}{2k+d}g_{12}^{2(k-1)}\left( 2k g_{12,i} g_{12,j}+g_{12}^2 \delta _{ij}\right) , \end{aligned}$$
(9.100)

where \(\widetilde{B}_k\) is [12]

$$\begin{aligned} \widetilde{B}_k=\int \ \mathrm{d}\widehat{\varvec{\sigma }} (\widehat{\varvec{\sigma }}\cdot \widehat{\mathbf {g}}_{12})^{2k}= S_d \pi ^{-1/2}\frac{\varGamma \left( \frac{d}{2}\right) \varGamma \left( k+\frac{1}{2}\right) }{ \varGamma \left( k+\frac{d}{2}\right) }. \end{aligned}$$
(9.101)

Using Eqs. (9.98)–(9.100) in Eq. (9.96), we achieve [25]

$$\begin{aligned} I[m V_{1i}V_{1j}]= & {} \frac{\nu _\text {M}}{n d}m \frac{1+\alpha }{2}\int \mathrm{d}\mathbf {v}_1 \int \mathrm{d}\mathbf{v}_{2}f(\mathbf{v}_{1})f(\mathbf{v}_{2})\left[ \frac{1+\alpha }{2(d+2)}\left( 2g_{12,i}g_{12,j}+g_{12}^2 \delta _{ij}\right) \right. \nonumber \\&\left. -\left( V_{1i}g_{12,j} +V_{1j}g_{12,i}\right) \right] \nonumber \\= & {} -\nu _\text {M}\frac{1+\alpha }{2(d+2)}\left[ \frac{2}{d}\left( d+1-\alpha \right) P_{ij}-(1+\alpha )p\delta _{ij}\right] , \end{aligned}$$
(9.102)

where \(p=n T\) and \(P_{ij}\) is the pressure tensor. For the sake of convenience, Eq. (9.102) can be rewritten in terms of the traceless tensor \(\varPi _{ij}=P_{ij}-p\delta _{ij}\) as

$$\begin{aligned} I[m V_{1i}V_{1j}]=-\nu _{0|2}\varPi _{ij}-\zeta p \delta _{ij}, \end{aligned}$$
(9.103)

where the cooling rate \(\zeta \) is given by Eq. (9.3) and

$$\begin{aligned} \nu _{0|2}=\zeta +\frac{(1+\alpha )^2}{2(d+2)}\nu _\text {M}=\frac{(1+\alpha )(d+1-\alpha )}{d(d+2)}\nu _\text {M}. \end{aligned}$$
(9.104)

Next, the third-degree moments are considered. These moments can be obtained by following similar mathematical steps to those made before for the second-degree moments. Their expressions are [26]

$$\begin{aligned} \int \mathrm{d}\mathbf {v}\; \frac{m}{2}V^2 V_i\; J_\text {IMM}[\mathbf {v}|f,f]=-\nu _{2|1}q_i, \end{aligned}$$
(9.105)
$$\begin{aligned} \int \mathrm{d}\mathbf {v}\; \frac{m}{2} V_i V_j V_k\; J_\text {IMM}[\mathbf {v}|f,f]=-\nu _{0|3}Q_{ijk}-\frac{\nu _{2|1}-\nu _{0|3}}{d+2} \left( q_i \delta _{jk}+q_j \delta _{ik}+q_k \delta _{ij}\right) , \end{aligned}$$
(9.106)

where \(\nu _{0|3}=\frac{3}{2}\nu _{0|2}\),

$$\begin{aligned} \nu _{2|1}=\frac{3}{2}\zeta +\frac{(d-1)(1+\alpha )^2}{2d(d+2)} \nu _\text {M}=\frac{(1+\alpha )\left[ 5d+4-(d+8)\alpha \right] }{4d(d+2)}\nu _\text {M}, \end{aligned}$$
(9.107)

and we have introduced the third-rank tensor

$$\begin{aligned} Q_{ijk}=\int \mathrm{d}\mathbf {v}\; \frac{m}{2}V_iV_j V_k f(\mathbf {V}). \end{aligned}$$
(9.108)

Note that the relation (9.105) can be easily obtained from Eq. (9.106) by taking its trace.

The expressions of the fourth-order collisional moments are larger and so will be omitted here. They can be found elsewhere [26]. As an illustration, only the collisional moment associated with the isotropic moment \(V^4\) is considered. It is given by [24, 26]

$$\begin{aligned} \int \mathrm{d}\mathbf {v}\; m V^4\; J_\text {IMM}[\mathbf {v}|f,f]=-\nu _{4|0}M_4+\frac{\lambda _1}{m n}d^2 p^2-\frac{\lambda _2}{m n} \varPi _{k\ell }\varPi _{\ell k}, \end{aligned}$$
(9.109)

where the coefficients \(\nu _{4|0}\), \(\lambda _1\), and \(\lambda _2\) are

$$\begin{aligned} \nu _{4|0}=2\zeta +\frac{(1+\alpha )^2(4d-7+6\alpha -3\alpha ^2)}{8d(d+2)}\nu _\text {M}, \end{aligned}$$
(9.110)
$$\begin{aligned} \lambda _1=\frac{(1+\alpha )^2\left( 4d-1-6\alpha +3\alpha ^2\right) }{8d^2}\nu _\text {M}, \end{aligned}$$
(9.111)
$$\begin{aligned} \lambda _2=\frac{(1+\alpha )^2\left( 1+6\alpha -3\alpha ^2\right) }{4d(d+2)}\nu _\text {M}. \end{aligned}$$
(9.112)

Now the case of multicomponent granular mixtures is considered. Let us consider the first-degree collisional moment. It is given by

$$\begin{aligned} \int \mathrm{d}\mathbf{v} m_i \mathbf{V}J_{\text {IMM},ij}[f_i,f_j]=m_i\frac{\nu _{\text {M},ij}}{n_j S_d} \int \mathrm{d}\mathbf {v}_1 \int \mathrm{d}\mathbf{v}_{2}\;f_i(\mathbf{v}_{1}) f_j(\mathbf{v}_{2})\int \mathrm{d}\widehat{\varvec{\sigma }}\left( \mathbf {V}_1'-\mathbf {V}_1\right) , \end{aligned}$$
(9.113)

where use has been made of the relation (9.96) and

$$\begin{aligned} \mathbf {V}_1'=\mathbf {V}_1-\frac{m_j}{m_i+m_j}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\widehat{\varvec{\sigma }}. \end{aligned}$$
(9.114)

The collision integral (9.113) can be easily evaluated after performing the angular integration. The final result is

$$\begin{aligned} \int \mathrm{d}\mathbf{v} m_i\mathbf{V}J_{\text {IMM},ij}[f_i,f_j]=-\frac{\nu _{\text {M},ij}}{d \rho _j}\mu _{ji}(1+\alpha _{ij}) \left( \rho _j\mathbf{j}_i-\rho _i\mathbf{j}_j\right) , \end{aligned}$$
(9.115)

where we recall that \(\mu _{ij}=m_i/(m_i+m_j)\), \(\rho _i=m_i n_i\) is the mass density of species i and

$$\begin{aligned} \mathbf {j}_i=\int \mathrm{d}\mathbf {v}\; m_i \mathbf {V} f_i(\mathbf {V}). \end{aligned}$$
(9.116)

The second-degree collisional moment can be obtained by following similar steps. The result is [6]

$$\begin{aligned} \int \mathrm{d}\mathbf{v} m_i\mathbf{V}\mathbf{V}J_{\text {IMM},ij}[f_i,f_j]= & {} -\frac{\nu _{\text {M},ij}}{d \rho _j}\mu _{ji}(1+\alpha _{ij}) \Bigg \{2\rho _j\mathsf{P}_i-\left( \mathbf{j}_i\mathbf{j}_j+\mathbf{j}_j\mathbf{j}_i\right) \nonumber \\&-\frac{2}{d+2}\mu _{ji}(1+\alpha _{ij})\Bigg [\rho _j\mathsf{P}_i+\rho _i\mathsf{P}_j- \left( \mathbf{j}_i\mathbf{j}_j+\mathbf{j}_j\mathbf{j}_i\right) \nonumber \\&+\left( \frac{d}{2}\left( \rho _ip_j+\rho _jp_i\right) -\mathbf{j}_i\cdot \mathbf{j}_j\right) \mathsf {I} \Bigg ]\Bigg \}, \end{aligned}$$
(9.117)

where \(p_i=n_i T_i\) is the partial pressure of species i, \(\mathsf {I}\) is the \(d\times d\) unit tensor, and

$$\begin{aligned} \mathsf {P}_i=\int \mathrm{d}\mathbf {v}\; m_i \mathbf {V} \mathbf {V}\; f_i(\mathbf {V}). \end{aligned}$$
(9.118)

From Eq. (9.117), one can easily obtain the partial cooling rates \(\zeta _i\):

$$\begin{aligned} \zeta _i= & {} -\sum _j\;\frac{1}{dn_iT_i}\int \mathrm{d}\mathbf {v}\; m_i V^2 J[f_i,f_j] \nonumber \\= & {} \sum _j\frac{2\nu _{\text {M},ij}}{d}\mu _{ji}(1+\alpha _{ij})\Bigg [1-\frac{\mu _{ji}}{2}(1+\alpha _{ij}) \frac{\theta _i+\theta _j}{\theta _j}\nonumber \\&+\frac{\mu _{ji}(1+\alpha _{ij})-1}{d\rho _j p_i}\mathbf {j}_i\cdot \mathbf {j}_j\Bigg ]. \end{aligned}$$
(9.119)

The third-degree collisional moment associated with heat flux has been explicitly evaluated elsewhere [39].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzó, V. (2019). Inelastic Maxwell Models for Dilute Granular Gases. In: Granular Gaseous Flows. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-04444-2_9

Download citation

Publish with us

Policies and ethics