Skip to main content

Transport Around Steady Simple Shear Flow in Dilute Granular Gases

  • Chapter
  • First Online:
  • 533 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

This chapter deals with the study of linear transport around the uniform or simple shear flow state. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first-order in the deviations of the hydrodynamic fields with respect to their values in the (unperturbed) non-Newtonian shear flow state. Given that the reference state (zeroth-order approximation in the Chapman–Enskog-like expansion) applies to arbitrary shear rates, the successive approximations in perturbation expansion retain all the hydrodynamic orders in the shear rate. As expected, due to the anisotropy in velocity space induced in the system by the shear flow, mass, momentum, and heat fluxes are given in terms of tensorial transport coefficients instead of the conventional scalar Navier–Stokes transport coefficients. The study is carried out for monocomponent granular gases and binary granular mixtures in the tracer limit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  2. Lutsko, J.F.: Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid. Phys. Rev. E 73, 021302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Walton, O.R., Braun, R.L.: Viscosity and temperature calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)

    Article  ADS  Google Scholar 

  4. Campbell, C.S., Brennen, C.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188 (1985)

    Article  ADS  Google Scholar 

  5. Hopkins, M.H., Louge, M.Y.: Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47–56 (1991)

    Article  ADS  Google Scholar 

  6. Goldhirsch, I., Tan, M.L.: The single-particle distribution function for rapid granular shear flows of smooth inelastic disks. Phys. Fluids 8, 1752–1763 (1996)

    Article  ADS  Google Scholar 

  7. Alam, M., Luding, S.: Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69–103 (2003)

    Article  ADS  Google Scholar 

  8. Savage, S.B.: Instability of unbounded uniform granular shear flow. J. Fluid Mech. 241, 109–123 (1992)

    Article  ADS  Google Scholar 

  9. Babic, M.: On the stability of rapid granular flows. J. Fluid Mech. 254, 127–150 (1993)

    Article  ADS  Google Scholar 

  10. Alam, M., Nott, P.R.: The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343, 267–301 (1997)

    Article  ADS  Google Scholar 

  11. Alam, M., Nott, P.R.: Stability of plane Couette flow of a granular material. J. Fluid Mech. 377, 99–136 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kumaran, V.: Asymptotic solution of the Boltzmann equation for the shear flow of smooth inelastic disks. Physica A 275, 483–504 (2000)

    Google Scholar 

  13. Kumaran, V.: Anomalous behaviour of hydrodynamic modes in the two dimensional shear flow of a granular material. Physica A 284, 246–264 (2000)

    Google Scholar 

  14. Kumaran, V.: Hydrodynamic modes of a sheared granular flow from the Boltzmann and Navier-Stokes equations. Phys. Fluids 13, 2258–2268 (2001)

    Article  ADS  Google Scholar 

  15. Garzó, V.: Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73, 021304 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lee, M., Dufty, J.W.: Transport far from equilibrium: uniform shear flow. Phys. Rev. E 56, 1733–1745 (1997)

    Article  ADS  Google Scholar 

  17. Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  18. Astillero, A., Santos, A.: Aging to non-Newtonian hydrodynamics in a granular gas. Europhys. Lett. 78, 24002 (2007)

    Article  ADS  Google Scholar 

  19. Jenkins, J.T., Richman, M.W.: Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313–328 (1988)

    Article  ADS  Google Scholar 

  20. Saha, S., Alam, M.: Non-Newtonian stress, collisional dissipation and heat flux in the shear flow of inelastic disks: a reduction via Grad’s moment method. J. Fluid Mech. 757, 251–296 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Garzó, V., Santos, A.: Hydrodynamics of inelastic Maxwell models. Math. Model. Nat. Phenom. 6, 37–76 (2011)

    Article  MathSciNet  Google Scholar 

  22. Tij, M., Tahiri, E., Montanero, J.M., Garzó, V., Santos, A., Dufty, J.W.: Nonlinear Couette flow in a low density granular gas. J. Stat. Phys. 103, 1035–1068 (2001)

    Article  Google Scholar 

  23. Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921–1929 (1972)

    Article  ADS  Google Scholar 

  24. Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    MATH  Google Scholar 

  25. Natarajan, V.V.R., Hunt, M.L., Taylor, E.D.: Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1–25 (1995)

    Article  ADS  Google Scholar 

  26. Menon, N., Durian, D.J.: Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow. Science 275, 1920–1922 (1997)

    Article  ADS  Google Scholar 

  27. Zik, O., Stavans, J.: Self-diffusion in granular flows. Europhys. Lett. 16, 255–258 (1991)

    Article  ADS  Google Scholar 

  28. Savage, S.B., Dai, R.: Studies of granular shear flows. Wall slip velocities, “layering” and self-diffusion. Mech. Mater. 16, 225–238 (1993)

    Article  Google Scholar 

  29. Zamankhan, P., Polashenski Jr., W., Tafreshi, H.V., Manesh, A.S., Sarkomaa, P.J.: Shear-induced particle diffusion in inelastic hard sphere fluids. Phys. Rev. E 58, R5237–R5240 (1998)

    Article  ADS  Google Scholar 

  30. Campbell, C.S.: Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85–101 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. Garzó, V.: Tracer diffusion in granular shear flows. Phys. Rev. E 66, 021308 (2002)

    Article  ADS  Google Scholar 

  32. Garzó, V.: Mass transport of an impurity in a strongly sheared granular gas. J. Stat. Mech. P02012 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzó, V. (2019). Transport Around Steady Simple Shear Flow in Dilute Granular Gases. In: Granular Gaseous Flows. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-04444-2_8

Download citation

Publish with us

Policies and ethics