Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 950))

Abstract

This chapter describes in detail the formalism of the Generator Coordinate Method and its use in constructing both static and dynamic collective states of the nucleus, starting from constrained Hartree-Fock-Bogoliubov solutions. The full formalism is then reduced to a Schrödinger-like equation, and the calculation of its inertial tensor and zero-point energies is presented. Next, the calculations are extended beyond the adiabatic approximation and the Schrödinger Collective Intrinsic Model is derived. The multi-\(O\left (4\right )\) schematic model introduced in Chap. 2 is used throughout this chapter to illustrate the formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the GC integration domain is bounded or, more generally, if the kernel N(q, q′) is a Hilbert-Schmidt operator (i.e. \(\left |\iint d^{n}qd^{n}q'N(q,q')\right |<\infty \)) the eigenvalues and eigenfunctions of N constitute denumerable sets. We assume here that this is not necessarily the case. Therefore, provided the kernel N(q, q′) obeys appropriate convergence conditions when the q i and \(q^{\prime }_{i}\) go to infinity, its eigenvalues and eigenfunctions are to be labelled by means of a continuous parameter ξ.

  2. 2.

    Let us mention that, when a density-dependent effective interaction is used – which is the case of the applications to fission presented in this book – the nature of the one-body density to insert in the effective interaction when calculating non-diagonal matrix elements \(\langle \varPhi _{q}\vert H\vert \varPhi _{q'}\rangle \), q ≠ q′ is unclear, and various prescriptions have been considered in the literature [12, 13].

  3. 3.

    The denomination “cranking” comes from a model proposed by Inglis to describe rotations in deformed nuclei, the cranking model [54, 60], which gives for the nuclear moment an expression of the same form as the one of the ATDHF collective inertia when the “cranking” approximation is used.

  4. 4.

    As noted in [20], this is not a proper square root since we take the adjoint on the left.

  5. 5.

    The difference in sign from Eq. (C.5) in [20] for \(B_{-1/2}\left (\bar {q}\right )\) and \(B_{1/2}\left (\bar {q}\right )\) is due to the fact that we use \(\left [\hat {P}\bar {N}^{\left (2\right )}\left (\bar {q}\right )\right ]^{2}\) instead of \(\left [\bar {N}^{\left (2\right )\prime }\left (\bar {q}\right )\right ]^{2}\), and there is a minus sign from an i 2 factor that appears when \(\hat {P}\) is written as a differential operator.

References

  1. Hill, D.L., Wheeler, J.A.: Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  2. Griffin, J.J., Wheeler, J.A.: Phys. Rev. 108, 311 (1957)

    Article  ADS  Google Scholar 

  3. Schunck, N., Robledo, L.M.: arXiv:1511.07517v2, submitted to Rep. Prog. Phys. (2016)

    Google Scholar 

  4. Haider, Q., Gogny, D.: J. Phys. G 18, 993 (1992)

    Article  ADS  Google Scholar 

  5. Fredholm, E.I.: Acta Math. 27, 365 (1903)

    Article  MathSciNet  Google Scholar 

  6. Wyld, H.W.: Mathematical Methods for Physics. Addison-Wesley (1976)

    Google Scholar 

  7. Chattopadhyay, P., Dreizler, R.M., Trsic, M., Fink, M.: Z. Phys. A285, 7 (1978)

    Article  ADS  Google Scholar 

  8. Bonche, P., Dobaczewski, J., Flocard, H., Heenen, P.-H., Meyer, J.: Nucl. Phys. A510, 466 (1990)

    Article  ADS  Google Scholar 

  9. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, Heidelberg (1980)

    Book  Google Scholar 

  10. Robledo, L.M., Bertsch, G.F.: Phys. Rev. C 84, 054302 (2011)

    Article  ADS  Google Scholar 

  11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing, 2nd edn., Cambridge University Press (1992)

    Google Scholar 

  12. Duguet, T., Bonche, P.: Phys. Rev. C 67, 054308 (2003)

    Article  ADS  Google Scholar 

  13. Robledo, L.M.: J. Phys. G 37, 064020 (2010)

    Article  ADS  Google Scholar 

  14. Reinhard, P.-G.: Nucl. Phys. A252, 120 (1975)

    Article  ADS  Google Scholar 

  15. Reinhard, P.-G., Grümmer, F., Goeke, K.: Z. Phys. A317, 339 (1984)

    Article  ADS  Google Scholar 

  16. Reinhard, P.-G., Goeke, K., Rep. Prog. Phys. 50, 1 (1987)

    Article  ADS  Google Scholar 

  17. Weinberg, S.: In: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York/London/Sydney/Toronto (1972), Part 2, Chaps. 3–4

    Google Scholar 

  18. Podolsky, B.: Phys. Rev. 32, 812 (1928)

    Article  ADS  Google Scholar 

  19. Pauli, W.: Handbuch der Physik, vol. XXIV, p. 120. Springer, Berlin (1933)

    Google Scholar 

  20. Bernard, R., Goutte, H., Gogny, D., Younes, W.: Phys. Rev. C 84, 044308 (2011)

    Article  ADS  Google Scholar 

  21. Didong, M., Müther, H., Goeke, K., Faessler, A.: Phys. Rev. C 14, 1189 (1973)

    Article  ADS  Google Scholar 

  22. Müther, H., Goeke, K., Allaart, K., Faessler, A.: Phys. Rev. C 15, 1467 (1977)

    Article  ADS  Google Scholar 

  23. Tajima, N., Flocard, H., Bonche, P., Dobaczewski, J., Heenen, P.-H.: Nucl. Phys. A551, 409 (1993)

    Article  ADS  Google Scholar 

  24. Holzwarth, G.: Nucl. Phys. A185, 268 (1972)

    Article  ADS  Google Scholar 

  25. Kerman, A.K., Koonin, S.: Phys. Scripta 10A, 118 (1974)

    Article  ADS  Google Scholar 

  26. Libert, J., Girod, M., Delaroche, J.-P.: Phys. Rev. C 60, 054301 (1999)

    Article  ADS  Google Scholar 

  27. Li, Z.P., Nikšic, T., Ring, P., Vretenar, D., Yao, J.M.: J. Meng Phys. Rev. C 86, 034334 (2012)

    Google Scholar 

  28. Peierls, R.E., Yoccoz, J.: Proc. Phys. Soc. Lond. A70, 381 (1957)

    Article  ADS  Google Scholar 

  29. Peierls, R.E., Thouless, D.J.: Nucl. Phys. 38, 154 (1962)

    Article  Google Scholar 

  30. Rouhaninejad, H., Yoccoz, J.: Nucl. Phys. 78, 353 (1966)

    Article  Google Scholar 

  31. Girod, M., Grammaticos, B.: Nucl. Phys. A330, 40 (1979)

    Article  ADS  Google Scholar 

  32. Robledo, L.M., Egido, J.L., Nerlo-Pomorska, B. Pomorski, K.: Phys. Lett. B201, 409 (1988)

    Article  ADS  Google Scholar 

  33. Baranger, M., Vénéroni, M.: Ann. Phys. (N.Y.) 114, 123 (1978)

    Google Scholar 

  34. Villars, F.M.H.: In: Ripka, G., Porneuf, M. (eds.) Proceedings of the International Conference on Nuclear Selfconsistent Fields, Trieste, 1975. North Holland, Amsterdam (1975)

    Google Scholar 

  35. Villars, F.M.H.: Nucl. Phys. A285, 269 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  36. Goeke, K., Reinhard, P.G., Ann. Phys. (N.Y.) 124, 249 (1980)

    Google Scholar 

  37. Baran, A., Sheikh, J.A., Dobaczewski, J., Nazarewicz, W., Staszczak, A.: Phys. Rev. C 84, 054321 (2011)

    Google Scholar 

  38. Baran, A., Kowal, M., Reinhard, P.-G., Robledo, L.M., Staszczak, A., Warda, M.: Nucl. Phys. A944, 442 (2015)

    Article  ADS  Google Scholar 

  39. Reinhard, P.-G., Goeke, K.: Phys. Rev. C20, 1546 (1979)

    ADS  Google Scholar 

  40. Holzwarth, G., Yukawa, T.: Nucl. Phys. A219, 125 (1974)

    Article  ADS  Google Scholar 

  41. Krieger, S.J., Goeke, K.: Nucl. Phys. A 234, 269 (1974)

    Google Scholar 

  42. Brink, D.M., Giannoni, M.J., Veneroni, M.: Nucl. Phys. A 258, 237 (1976)

    Google Scholar 

  43. Goeke, K., Reinhard, P.G.: Ann. Phys. 112, 328 (1978)

    Article  ADS  Google Scholar 

  44. Giannoni, M.J., Quentin, P.: Phys. Rev. C 21, 2060 (1980)

    Google Scholar 

  45. Giannoni, M.J., Quentin, P.: Phys. Rev. C 21, 2076 (1980)

    Google Scholar 

  46. Dobaczewski, J., Skalski, J.: Nucl. Phys. A 369, 123 (1981)

    Google Scholar 

  47. Grümmer, F., Goeke, K., Reinhardt, P.-G.: Quantized ATDHF: theory and realistic applications to heavy ion fusion. In: Goeke, K., Reinhard, P.-G. (eds.) Time-Dependent Hartree-Fock and Beyond: Proceedings of the International Symposium Held in Bad Honnef, Germany, 7–11 June 1982. Lecture Notes in Physics, vol. 171, pp. 323. Springer, Berlin/Heidelberg (1982)

    Google Scholar 

  48. Goeke, K., Grümmer, F., Reinhard, P.G.: Ann. Phys. 150, 504 (1983)

    Article  ADS  Google Scholar 

  49. Nazarewicz, W.: Nucl. Phys. A 557, 489c (1993)

    Google Scholar 

  50. Goutte, H., Berger, J.F., Casoli, P., Gogny, D.: Phys. Rev. C 71, 024316 (2005)

    Google Scholar 

  51. Skalski, J.: Phys. Rev. C 77, 064610 (2008)

    Google Scholar 

  52. Warda, M., Egido, J., Robledo, L.M., Pomorski, K.: Phys. Rev. C 66, 014310 (2002)

    Google Scholar 

  53. Schindzielorz, N., Erler, J., Klüpfel, P., Reinhard, P.-G., Hager, G.: Int. J. Mod. Phys. E 18, 773 (2009)

    Article  ADS  Google Scholar 

  54. Inglis, D.R.: Phys. Rev. 103, 1786 (1956)

    Article  ADS  Google Scholar 

  55. Belyaev, S.T.: Mat. Fys. Medd. Dan. Vid. Selsk. 31, 11 (1959)

    Google Scholar 

  56. Bès, D.R., Szymański, Z.: Nucl. Phys. 28, 42 (1961)

    Article  Google Scholar 

  57. Nilsson, S.G., Tsang, C.-F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I.-L., Möller, P., Nilsson, B.: Nucl. Phys. A 131, 1 (1969)

    Google Scholar 

  58. Sobiczewski, A., Szymański, Z., Wycech, S., Nilsson, S.G., Nix, J.R., Tsang, C.F., Gustafson, C., Möller, P., Nilsson, B.: Nucl. Phys. A 131, 67 (1969)

    Google Scholar 

  59. Brack, M., Damgård, J., Jensen, A.S., Pauli, H.C., Strutinsky, V.M., Wong, C.Y.: Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  60. Inglis, D.R.: Phys. Rev. 96, 1059 (1954)

    Article  ADS  Google Scholar 

  61. Yuldashbaeva, E.Kh., Libert, J., Quentin, P., Girod, M.: Phys. Lett. B461 1 (1999)

    Article  ADS  Google Scholar 

  62. Goeke, K., Grümmer, F., Reinhard, P.G.: Z. Phys. A317, 339 (1984)

    ADS  Google Scholar 

  63. Thouless, D.J., Valatin, J.G.: Nucl. Phys. 31, 211 (1962)

    Article  Google Scholar 

  64. Girod, M., Delaroche, J.-P.M., Berger, J.-F., Libert, J.: Phys. Lett. B 325, 1 (1994)

    Google Scholar 

  65. Terasaki, J., Heenen, P.-H., Bonche, P., Dobaczewski, J., Flocard, H.: Nucl. Phys A593, 1 (1995)

    Article  ADS  Google Scholar 

  66. Egido, J.L., Robledo, L.M.: Phys. Rev. Lett. 85, 1198 (2000)

    Article  ADS  Google Scholar 

  67. Duguet, T., Bonche, P., Heenen, P.-H.: Nucl. Phys. A679, 427 (2001)

    Article  ADS  Google Scholar 

  68. Laftchiev, H., Samsoen, D., Quentin, P., Piperova, J.: Eur. Phys. J. A12, 155 (2001)

    Article  ADS  Google Scholar 

  69. Afanasjev, A.V., Khoo, T.L., Frauendorf, S., Lalazissis, G.A., Ahmad, I.: Phys. Rev. C 67, 024309 (2003)

    Google Scholar 

  70. L. Próchniak, Quentin, P., Samsoen, D., Libert, J.: Nucl. Phys. A 730, 59 (2004)

    Google Scholar 

  71. Bianco, D., Knapp, F., Lo Iudice, N., Veselý, P., Andreozzi, F., De Gregorio, G., Porrino, A.: J. Phys. G 41, 025109 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter was prepared by a contractor of the U.S. Government under contract number DE-AC52-06NA27344. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younes, W., Gogny, D.M., Berger, JF. (2019). The Generator Coordinate Method. In: A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method. Lecture Notes in Physics, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-04424-4_3

Download citation

Publish with us

Policies and ethics