Skip to main content

Plant Growth-Promoting Bacteria Associated to the Halophyte Suaeda maritima (L.) in Abbas, Iran

  • Chapter
  • First Online:
Sabkha Ecosystems

Abstract

Suaeda maritima (L.), regarded as a promising halophyte, is widely distributed along the coastal plains of Abbas, Iran. Suaeda maritima has been highly incorporated with the traditional agriculture to support the Iranian agricultural economy. However, its productivity is limited by a lack of available nitrogen. Application of halotolerant plant growth-promoting rhizobacteria (PGPR) suggested being an alternative biological fertilizer. Increasing the knowledge of halotolerant PGPR associated to the native crops remains important. Nine endemic colonies were isolated from the roots of S. maritima. Those isolates were cultured in different salinity conditions (0, 0.25, 0.5, and 0.75 M NaCl) and maintained at different temperature regimes (30 and 55 °C). The nitrogen fixation ability of the isolated endemic colonies was screened by acetylene reduction assay. Among them, only one showed high acetylene reduction activity and capacity to solubilize phosphates. This bacterium was identified as Bacillus amyloliquefaciens. Seeds inoculated with Bacillus amyloliquefaciens, in conjunction with Azospirillum halopraeferens as a biological control, were tested for seed germination and early growth promotions of S. maritima exposed to high salinities under in vitro conditions. Bacillus amyloliquefaciens showed a high specificity for the wild S. maritima. This is the first report of Bacillus amyloliquefaciens as nitrogen-fixing bacterium associated with the oilseed S. maritima a novel halophyte crop. Through this work, a reliable biological method was found, based on beneficial bacteria, to contribute to maintain or improve the fertility of soils sustaining Suaeda fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhavan K, Campbell W, Jurinak J, Dudley L (1991) Effects of CaSO4, CaCl2, and NaCl on leaf nitrogen, nodule weight, and acetylene reduction activity in Phaseolus vulgaris L. Arid Soil Res Rehabil 5:97–103

    Google Scholar 

  • Arsac J, Lamothe C, Mulard D, Fages J (1990) Growth enhancement of maize (Zea mays L) through Azospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agronomie 10:640–654

    Google Scholar 

  • Bashan Y, Holguin G, Puente M (1992) Alternativaagrícola regional por fertilizantesbacterianosenuso y manejo de los recursos naturales en la Sierra de la Laguna Baja California Sur. In: Ortega R (ed) Uso y Manejo de los Recursos Naturales en la Sierra de la Laguna, B.C.S. Centro de InvestigacionesBiológicas del Noroeste, La Paz, pp 46–67

    Google Scholar 

  • Bagwell C, Dantzler M, Bergholz P, Llovell C (2001) Host-specific ecotype diversity of rhizoplane diazotrophs of the perennial glasswort Salicornia virginica and selected salt mash grasses. J Aqu Microbiol Ecol 23:293–300

    Google Scholar 

  • Baldani V, Dobereiner I (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:443–439

    Google Scholar 

  • Banwari I, Rao V (1990) Effect of Azospirillum brasilense on growth and nitrogen content of Cynodon dactylon under different moisture regimens. Ind. J Plant Physiol 33:210–213

    Google Scholar 

  • Barnes H, Blackstock J (1973) Estimation of lipids in marine animal and tissues: detailed investigation of sulphophosphovanil method for ‘total’ lipids. J Exp Mar Biol Ecol 12:103–118

    CAS  Google Scholar 

  • Carrillo A; Puente ME, Castellanos E, Bashan Y (1998) Aplicaciones Biotecnológicas de EcologíaMicrobiana. Pontificia Universidad Javeriana, Santa Fe de Bogotá, Colombia and Centro de InvestigacionesBiológicas del Noroeste Manual de Laboratorio, Manual de Laboratorio, La Paz, B.C.S., México, pp 15–20

    Google Scholar 

  • Craven PA, Hayasaka S (1982) Inorganic phosphate solubilization by rhizosphere bacteria in a Zostera marina community. Can J Microbiol 28:605–610

    CAS  Google Scholar 

  • De Troch P, Vaderleyden J (1996) Surface properties and motility of rhizobium and Azospirillum in relation to plant root attachment. Microb Ecol 32:149–169

    PubMed  Google Scholar 

  • Díaz V, Ferrera C, Almaraz S, Alcántar G (2001) Inoculation of plant growth-promoting bacteria in lettuce. Terrain 19:327–335

    Google Scholar 

  • Food and Agriculture Organization, FAO (1998) Red Latinoamericana de CooperaciónTécnicaen SistemasAgroforestales. EspeciesArbóreas y Arbustivas para las zonas Áridas y Semiáridas de América Latina, p 320

    Google Scholar 

  • Felker P, Clark PR, Laag AE, Pratt P (1981) Salinity tolerance of the tree legumes mesquite (Prosopis glandulosa var torreyana, P. velutina, and P. articulate) algarrobo (P. chilensis), Kiawe (P. pallida) and tamarugo (P. tamarugo) grown in sand culture on nitrogen free media. Plant Soil 61:311–317

    Google Scholar 

  • Goodfriend W, Olsenm M, Frye R (2000) Soil microfloral and microfaunal response to Salicornia bigelovii planting density and soil residue amendment. Plant Soil 1:23–32

    Google Scholar 

  • Hamdi H (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microb. Mol Biol Rev 63:968–989

    Google Scholar 

  • Holguin G, Guzman M, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. Federation of European Microbiological Societies. Microbiol Ecol 101:207–216

    CAS  Google Scholar 

  • Khan MA, Gul B (1998) High salt tolerance in germinating dimorphic seeds of Arthrocnemum indicum. Int J Plant Sci 159:826–832

    Google Scholar 

  • Khan MA, Gul B (2002) Salt tolerant plants of coastal Sabkhas of Pakistan. In: Sabkha A, Barth H, Boer B (eds) Ecosystems. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Khan MA, Gul B, Weber DJ (2000) Germination response of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214

    Google Scholar 

  • Little EL (1950) Southwestern trees – a guide to the native species of New Mexico and Arizona. USD, Handbook No. 9, Government Printing Office, Washington, DC, 560 p

    Google Scholar 

  • Liu W, Wang X, Wu L, Chen M, Tu C, Luo Y, Christie P (2012) Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87(10):1105–1110

    CAS  PubMed  Google Scholar 

  • Lovell C, Piceno Y, Bagwell C (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Appl Environ Microbiol 66:3814–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire J (1962) Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Sci 2:176–177

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  Google Scholar 

  • Nielsen I, Finster K, Welsch A, Donelly R, Herbert R, De Wit L, Lomstein B (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71

    CAS  PubMed  Google Scholar 

  • Okon Y, Hadar Y (1987) Microbial inoculants as crop-yield enhancers. CRC Crit Rev Biotechnol 6:6–85

    Google Scholar 

  • Puente M (2004) Poblacionesbacterianasendófitas y del rizoplano de plantas del desiertodegradadotas de roca y suefectosobre el crecimiento del cardón (Pachycereuspringlei [S. WATS] BRITT. and ROSS). Doctoral thesis, Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S., México, pp 1–166

    Google Scholar 

  • Rennie R (1981) A single medium for the isolation of acetylene reducing (dinitrogen-fixing bacteria from soil). Can J Microbiol 27:8–14

    CAS  PubMed  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielmans S, De Ley J (1987) Azospirillum halopraeferens sp. novo a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca L. Kunth). Int J Syst Bacteriol 37:43–51

    Google Scholar 

  • Rodelas B, González I, Salmeron V, Pozo C, Martinez T (1996) Enhancement of nodulation, N-2 fixation and growth of faba bean (Viciafaba L.) by combined inoculation with Rhizobium leguminosarum by Viceaesp and Azospirillum brasilense. Symbiosis 21:175–186

    Google Scholar 

  • Rojas A, Holguin G, Glick B, Bashan Y (2001) Synergism between Phyllobacterium sp (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. Microb Ecol 35:181–187

    CAS  Google Scholar 

  • Rueda PEO, Barrón H, Jojanes H (2009a) BacteriasPromotoras Del Crecimiento Vegetal. Editorial Plaza y Valdes, México, p 112

    Google Scholar 

  • Rueda PEO, Barrón H, Tarazón H, Preciado R (2009b) La Salinidad: Un Problema o Una Opción Para La Agricultura? Editorial Plaza y Valdes, México City, p 264

    Google Scholar 

  • Rueda PEO, Castellanos T, Troyo E, De León J (2004) Effect of Klebsiella pneumoniae and Azospirillum halopraeferens on the growth and development of two Salicornia bigelovii genotypes. Aust J Exp Agric 44:65–74

    Google Scholar 

  • Rueda PEO, Félix A, Beltrán M, Ruíz H, Valdez C, García H, Ávila N, Partida L, Murillo B (2011) Sustainable options for soil management in arid zones: uses of the halophyte Salicornia bigelovii (Torr.) and biofertilizers in the modern agriculture. Trop Subtrop Agroecosyst 13:157–167

    Google Scholar 

  • Robles AB, Ruiz M, Ramos ME, González R (2009) Role of livestock grazing in sustainable use, naturalness promotion in naturalization of marginal ecosystems of southeastern Spain (Andalusia). In: Rigueiro-Rodriguez A, McAdam J, Mosquera-Losada MR (eds) Agroforesty in Europe. Editorial Springer, Lugo, p 445

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • SAS, Institute (2001) SAS/STAT User’s Guide. Version 6.12 SAS Institute, Cary, NC

    Google Scholar 

  • Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Clement Z (ed) Methods in Phytobacteriology, vol 565. Akadamiai RU Kiado, Budapest

    Google Scholar 

  • Snedecor G (1956) In: Freeman SR (ed) Statistical methods applied to experiments in agriculture and biology. The Iowa State College Press, Ames

    Google Scholar 

  • Sokal R, Rohlf F (1988) Biometry. In: Freeman SR (ed) The principles and practice of statistics in biological research, San Francisco, p 650

    Google Scholar 

  • Song J, Fan H, Zhao YY, Jia YH, Du XH, Wang BS (2008) Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat Bot 88:331–337

    CAS  Google Scholar 

  • Strickl J, Parsons T (1972) A practical handbook of sea water analysis. Bull Fish Res Can 167:49–52

    Google Scholar 

  • Sundara-Rao W, Sinha M (1963) Phosphate dissolving micro-organisms in the soil and rhizosphere. Indian J Microbiol 41:999–1011

    Google Scholar 

  • Towhidi A, Zhandi M (2007) Chemical composition, in vitro digestibility and palatability of nine plant species for dromedary camels in the province of Semnan. Iran Egypt J Biol 9:47–52

    Google Scholar 

  • Ungar I (2000) Ecophysiology of vascular halophytes. Department of Botany, CRC Press, Ohio University, Athens, p 209

    Google Scholar 

  • Vázquez P, Holguin G, Puente M, López-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Google Scholar 

  • Velarde M, Felker P, Degano C (2003) Evaluation of argentine and Peruvian Prosopis germplasm for growth at seawater salinities. J Arid Environ 55:515–531

    Google Scholar 

  • Villegas E, Rueda PEO, Puente ME, Muñiz SR, Avilés MS, Grimaldo JO, Murillo A, Preciado R (2010) First report of plant growth promoting bacteria from mesquite (Prosopis glandulosa) rhizosphere on volcans of Sonora desert. 12 International symposium on microbial ecology, Cairns, Australia, pp 15–25

    Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–293

    CAS  PubMed  Google Scholar 

  • Whipps J (2000) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Google Scholar 

  • Yokoishi T, Tanimoto S (1994) Seed germination of the halophyte Suaeda japonica under salt stress. J Plant Res 107:385–388

    CAS  Google Scholar 

  • Zexun I, Wei S (2000) Effect of cultural conditions on IAA biosynthesis by Klebsiella oxytoca SG-11. Chinese J Appl Environ Biol 6:66–69

    Google Scholar 

Download references

Acknowledgments

This work was supported by Academic Center for Education Culture and Research (ACECR) of Hormozgan, Iran. Thanks to Universidad de Sonora and Project of CONACYT (Apoyoscomplementarios para la consolidacióninstitucional de grupos de investigación) 2007; code: 74592 of Dr. Bernardo Murillo Amador, CIBNOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Omar Rueda-Puente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rueda-Puente, E.O. et al. (2019). Plant Growth-Promoting Bacteria Associated to the Halophyte Suaeda maritima (L.) in Abbas, Iran. In: Gul, B., Böer, B., Khan, M., Clüsener-Godt, M., Hameed, A. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-04417-6_18

Download citation

Publish with us

Policies and ethics