Skip to main content

IVUS-Net: An Intravascular Ultrasound Segmentation Network

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11010))

Included in the following conference series:

Abstract

IntraVascular UltraSound (IVUS) is one of the most effective imaging modalities that provides assistance to experts in order to diagnose and treat cardiovascular diseases. We address a central problem in IVUS image analysis with Fully Convolutional Network (FCN): automatically delineate the lumen and media-adventitia borders in IVUS images, which is crucial to shorten the diagnosis process or benefits a faster and more accurate 3D reconstruction of the artery. Particularly, we propose an FCN architecture, called IVUS-Net, followed by a post-processing contour extraction step, in order to automatically segments the interior (lumen) and exterior (media-adventitia) regions of the human arteries. We evaluated our IVUS-Net on the test set of a standard publicly available dataset containing 326 IVUS B-mode images with two measurements, namely Jaccard Measure (JM) and Hausdorff Distances (HD). The evaluation result shows that IVUS-Net outperforms the state-of-the-art lumen and media segmentation methods by 4% to 20% in terms of HD distance. IVUS-Net performs well on images in the test set that contain a significant amount of major artifacts such as bifurcations, shadows, and side branches that are not common in the training set. Furthermore, using a modern GPU, IVUS-Net segments each IVUS frame only in 0.15 s. The proposed work, to the best of our knowledge, is the first deep learning based method for segmentation of both the lumen and the media vessel walls in 20 MHz IVUS B-mode images that achieves the best results without any manual intervention. Code is available at https://github.com/Kulbear/ivus-segmentation-icsm2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software: https://www.tensorflow.org/

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Balocco, S., et al.: Standardized evaluation methodology and reference database for evaluating ivus image segmentation. Comput. Med. Imaging Graph. 38(2), 70–90 (2014)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv preprint arXiv:1606.00915 (2016)

  5. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  6. Downe, R., et al.: Segmentation of intravascular ultrasound images using graph search and a novel cost function. In: Proceedings of 2nd MICCAI Workshop on Computer Vision for Intravascular and Intracardiac Imaging, pp. 71–9. Citeseer (2008)

    Google Scholar 

  7. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  8. Faraji, M., Cheng, I., Naudin, I., Basu, A.: Segmentation of arterial walls in intravascular ultrasound cross-sectional images using extremal region selection. Ultrasonics 84, 356–365 (2018)

    Article  Google Scholar 

  9. Faraji, M., Shanbehzadeh, J., Nasrollahi, K., Moeslund, T.B.: EREL: extremal regions of extremum levels. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 681–685. IEEE (2015)

    Google Scholar 

  10. Faraji, M., Shanbehzadeh, J., Nasrollahi, K., Moeslund, T.B.: Extremal regions detection guided by maxima of gradient magnitude. IEEE Trans. Image Process. 24(12), 5401–5415 (2015)

    Article  MathSciNet  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Mendizabal-Ruiz, E.G., Rivera, M., Kakadiaris, I.A.: Segmentation of the luminal border in intravascular ultrasound b-mode images using a probabilistic approach. Med. Image Anal. 17(6), 649–670 (2013)

    Article  Google Scholar 

  18. Mendizabal-Ruiz, G., Kakadiaris, I.A.: A physics-based intravascular ultrasound image reconstruction method for lumen segmentation. Comput. Biol. Med. 75, 19–29 (2016)

    Article  Google Scholar 

  19. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. arXiv preprint arXiv:1703.02719 (2017)

  20. Rajpurkar, P., et al.: ChexNet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICRL), pp. 1–14 (2015)

    Google Scholar 

  23. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  25. Taki, A., et al.: Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int. J. Comput. Assist. Radiol. Surg. 3(3–4), 347–354 (2008)

    Article  Google Scholar 

  26. Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans. Inf. Technol. Biomed. 12(3), 335–347 (2008)

    Article  Google Scholar 

  27. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE (2017)

    Google Scholar 

  28. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  29. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  30. Zhu, X., Zhang, P., Shao, J., Cheng, Y., Zhang, Y., Bai, J.: A snake-based method for segmentation of intravascular ultrasound images and its in vivo validation. Ultrasonics 51(2), 181–189 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the PhD students in the Multimedia Research Centre at University of Alberta. Special thanks to Xinyao Sun for the discussions on the related work and the network architecture figure design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Faraji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Tong, L., Faraji , M., Basu, A. (2018). IVUS-Net: An Intravascular Ultrasound Segmentation Network. In: Basu, A., Berretti, S. (eds) Smart Multimedia. ICSM 2018. Lecture Notes in Computer Science(), vol 11010. Springer, Cham. https://doi.org/10.1007/978-3-030-04375-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04375-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04374-2

  • Online ISBN: 978-3-030-04375-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics