Skip to main content

DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection

  • Conference paper
  • First Online:
Book cover Sensors (CNS 2018)

Abstract

Dip-pen lithography (DPL) technique has been employed to develop a new flexible biosensor realized on nylon with the aim to detect the activity of human topoisomerase. The sensor is constituted by an ordered array of a DNA substrate on flexible nylon supports that can be exploited as a drug screening platform for anticancer molecules. Here, we demonstrate a rapid protocol that permits to immobilize minute quantities of DNA oligonucleotides by DPL on nylon surfaces. Theoretical and experimental aspects have been investigated to successfully print DNA oligonucleotides by DPL on such a porous and irregular substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segev-Bar, M., Haick, H.: Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013). https://doi.org/10.1021/nn402728g

    Article  Google Scholar 

  2. Sun, Y., Wang, HH.: Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, (2007).https://doi.org/10.1063/1.2742596

    Article  Google Scholar 

  3. Farcau, C., Moreira, H., Viallet, B., Grisolia, J., Ciuculescu-pradines, D., Amiens, C., Ressier, L.: Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 115, 14494–14499 (2011). https://doi.org/10.1021/jp202166s

    Article  Google Scholar 

  4. Segev-Bar, M., Landman, A., Nir-Shapira, M., Shuster, G., Haick, H.: Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces. 5, 5531–5541 (2013). https://doi.org/10.1021/am400757q

    Article  Google Scholar 

  5. Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: micro fluidic paper-based analytical devices 82, 3–10 (2010). https://doi.org/10.1007/s10337-013-2413-y

    Article  Google Scholar 

  6. Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25, 29–46 (2013). https://doi.org/10.1002/elan.201200349

    Article  Google Scholar 

  7. Farahmand, E., Ibrahim, F., Hosseini, S., Rothan, H.A., Yusof, R., Koole, L.H., Djordjevic, I.: A novel approach for application of nylon membranes in the biosensing domain. Appl. Surf. Sci. 353, 1310–1319 (2015). https://doi.org/10.1016/j.apsusc.2015.07.004

    Article  Google Scholar 

  8. Arrabito, G., Pignataro, B.: Solution processed micro- and nano-bioarrays for multiplexed biosensing. Anal. Chem. 84, 5450–5462 (2012). https://doi.org/10.1021/ac300621z

    Article  Google Scholar 

  9. Khan, S., Lorenzelli, L., Dahiya, R.S.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015). https://doi.org/10.1109/JSEN.2014.2375203

    Article  Google Scholar 

  10. Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A.: “Dip-Pen” Nanolithography. Science 283, 661 LP-663 (1999)

    Article  Google Scholar 

  11. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008). https://doi.org/10.1038/nature06597

    Article  Google Scholar 

  12. Wang, J.C.: DNA topoisomerases. Nat. Rev. Mol. Cell Biol. 582, 209–219 (2009). https://doi.org/10.1007/978-1-60761-340-4

    Article  Google Scholar 

  13. Leppard, J.B., Champoux, J.J.: Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005). https://doi.org/10.1007/s00412-005-0345-5

    Article  Google Scholar 

  14. Zuccaro, L., Tesauro, C., Kurkina, T., Fiorani, P., Yu, H.K., Knudsen, B.R., Kern, K., Desideri, A., Balasubramanian, K.: Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015). https://doi.org/10.1021/acsnano.5b05709

    Article  Google Scholar 

  15. Wang, L., Arrabito, G.: Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 140, 5821–5848 (2015). https://doi.org/10.1039/C5AN00861A

    Article  Google Scholar 

  16. Anderson, D.M.: Imbibition of a liquid droplet on a deformable porous substrate. Phys. Fluids 17, 87104 (2005). https://doi.org/10.1063/1.2000247

    Article  MATH  Google Scholar 

  17. Arrabito, G., Reisewitz, S., Dehmelt, L., Bastiaens, P.I., Pignataro, B., Schroeder, H., Niemeyer, C.M.: Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. Small 9, 4243–4249 (2013). https://doi.org/10.1002/smll.201300941

    Article  Google Scholar 

  18. Na, G.C.: Interaction of calf skin collagen with glycerol: linked function analysis. Biochemistry 25, 967–973 (1986). https://doi.org/10.1021/bi00353a004

    Article  Google Scholar 

  19. Andersen, A.H., Gocke, E., Bonven, B.J., Nielsen, O.F., Westergaard, O.: Topoisomerase I has a strong binding preference for a conserved hexadecameric sequence in the promotor region of the rRNA gene from Tetrahymena pyriformis. Nucleic Acids Res. 13, 1543–1557 (1985). https://doi.org/10.1093/nar/13.5.1543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pignataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrara, V. et al. (2019). DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics