Skip to main content

Fast Fourier Transforms

  • Chapter
  • First Online:
  • 2922 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

As shown in Chap. 3, any application of Fourier methods leads to the evaluation of a discrete Fourier transform of length N (DFT(N)). Thus the efficient computation of DFT(N) is very important. Therefore this chapter treats fast Fourier transforms. A fast Fourier transform (FFT) is an algorithm for computing the DFT(N) which needs only a relatively low number of arithmetic operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Akavia, Deterministic sparse Fourier approximation via approximating arithmetic progressions. IEEE Trans. Inf. Theory 60(3), 1733–1741 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arioli, H. Munthe-Kaas, L. Valdettaro, Componentwise error analysis for FFTs with applications to fast Helmholtz solvers. Numer. Algorithms 12, 65–88 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Berg, Lineare Gleichungssysteme mit Bandstruktur und ihr asymptotisches Verhalten (Deutscher Verlag der Wissenschaften, Berlin, 1986)

    MATH  Google Scholar 

  4. S. Bittens, Sparse FFT for functions with short frequency support. Dolomites Res. Notes Approx. 10, 43–55 (2017)

    MathSciNet  MATH  Google Scholar 

  5. R.E. Blahut, Fast Algorithms for Digital Signal Processing (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  6. E.O. Brigham, The Fast Fourier Transform (Prentice Hall, Englewood Cliffs, 1974)

    Google Scholar 

  7. G. Bruun, z-Transform DFT filters and FFT’s. IEEE Trans. Acoust. Speech Signal Process. 26(1), 56–63 (1978)

    Google Scholar 

  8. D. Calvetti, A stochastic roundoff error analysis for FFT. Math. Comput. 56(194), 755–774 (1991)

    Article  MATH  Google Scholar 

  9. C.Y. Chu, The fast Fourier transform on the hypercube parallel computers. Ph.D. thesis, Cornell University, Ithaca, 1988

    Google Scholar 

  10. J.W. Cooley, J.W. Tukey, An algorithm for machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.J. Demeure, Fast QR factorization of Vandermonde matrices. Linear Algebra Appl. 122–124, 165–194 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Duhamel, H. Hollmann, Split-radix FFT algorithm. Electron. Lett. 20(1), 14–16 (1984)

    Article  Google Scholar 

  13. P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art. Signal Process. 19(4), 259–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Frigo, S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005)

    Article  Google Scholar 

  15. M. Frigo, S.G. Johnson, FFTW, C subroutine library (2009). http://www.fftw.org

  16. W. Gentleman, G. Sande, Fast Fourier transform for fun and profit, in Fall Joint Computer Conference AFIPS, vol. 29 (1966), pp. 563–578

    Google Scholar 

  17. A.C. Gilbert, M.J. Strauss, J.A. Tropp, A tutorial on fast Fourier sampling. IEEE Signal Process. Mag. 25(2), 57–66 (2008)

    Article  Google Scholar 

  18. A. Gilbert, P. Indyk, M. Iwen, L. Schmidt, Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

    Article  Google Scholar 

  19. G. Goerzel, An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65(1), 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  20. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  21. I.J. Good, The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B 20, 361–372 (1958)

    MathSciNet  MATH  Google Scholar 

  22. H. Hassanieh, The Sparse Fourier Transform: Theory and Practice (ACM Books, New York, 2018)

    Book  MATH  Google Scholar 

  23. H. Hassanieh, P. Indyk, D. Katabi, E. Price, Simple and practical algorithm for sparse Fourier transform, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (ACM, New York, 2012), pp. 1183–1194

    Book  MATH  Google Scholar 

  24. M.T. Heideman, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34(3), 265–277 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Heider, S. Kunis, D. Potts, M. Veit, A sparse Prony FFT, in Proceedings of 10th International Conference on Sampling Theory and Applications, vol. 9 (2013), pp. 1183–1194

    Google Scholar 

  26. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  27. M.A. Iwen, Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.A. Iwen, Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.G. Johnson, M. Frigo, A modified split radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process. 55(1), 111–119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Lawlor, Y. Wang, A. Christlieb, Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(1), 1350003 (2013)

    Article  MathSciNet  Google Scholar 

  31. J. Morgenstern, Note on a lower bound of the linear complexity of the fast Fourier transform. J. Assoc. Comput. Mach. 20, 305–306 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  32. H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, revised edn. (Springer, Berlin, 1982)

    Chapter  Google Scholar 

  33. S. Pawar, K. Ramchandran, Computing a k-sparse n-length discrete Fourier transform using at most 4k samples and \(o(k \log k)\) complexity, in Proceedings of the IEEE International Symposium on Information Theory (ISIT) (2013), pp. 464–468

    Google Scholar 

  34. T. Peter, G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Prob. 29, 025001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Pippig, PFFT, Parallel FFT subroutine library (2011). http://www.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en

  36. M. Pippig, PFFT: an extension of FFTW to massively parallel architectures. SIAM J. Sci. Comput. 35(3), C213–C236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Plonka, K. Wannenwetsch, A deterministic sparse FFT algorithm for vectors with small support. Numer. Algorithms 71(4), 889–905 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Plonka, K. Wannenwetsch, A sparse fast Fourier algorithm for real non-negative vectors. J. Comput. Appl. Math. 321, 532–539 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Plonka, K. Wannenwetsch, A. Cuyt, W.-S. Lee, Deterministic sparse FFT for m-sparse vectors. Numer. Algorithms 78(1), 133–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Potts, G. Steidl, M. Tasche, Numerical stability of fast trigonometric transforms - a worst case study. J. Concr. Appl. Math. 1(1), 1–36 (2003)

    MathSciNet  MATH  Google Scholar 

  41. D. Potts, M. Tasche, T. Volkmer, Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, Article 1 (2016)

    Article  Google Scholar 

  42. E. Prestini, The Evolution of Applied Harmonic Analysis. Models of the Real World, 2nd edn. (Birkhäuser/Springer, New York, 2016)

    Book  MATH  Google Scholar 

  43. C. Rader, Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56(6), 1107–1108 (1968)

    Article  Google Scholar 

  44. G.U. Ramos, Roundoff error analysis of the fast Fourier transform. Math. Comput. 25, 757–768 (1971)

    Article  MathSciNet  Google Scholar 

  45. C. Runge, Über die Zerlegung einer empirisch gegebenen periodischen Funktion in Sinuswellen. Z. Math. Phys. 48, 443–456 (1903)

    MATH  Google Scholar 

  46. J.C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17(5), 1150–1166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Tasche, H. Zeuner, Roundoff error analysis for fast trigonometric transforms, in Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, 2000), pp. 357–406

    MATH  Google Scholar 

  48. M. Tasche, H. Zeuner, Worst and average case roundoff error analysis for FFT. BIT Numer. Math. 41(3), 563–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  50. M. Vetterli, P. Duhamel, Split- radix algorithms for length-p m DFTs. IEEE Trans. Acoust. Speech Signal Process. 37(1), 57–64 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Winograd, Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theory 10, 169–180 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Winograd, On computing the discrete Fourier transform. Math. Comput. 32(141), 175–199 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Winograd, Arithmetic Complexity of Computations (SIAM, Philadelphia, 1980)

    Book  MATH  Google Scholar 

  54. X. Wu, Y. Wang, Z. Yan, On algorithms and complexities of cyclotomic fast Fourier transforms over arbitrary finite fields. IEEE Trans. Signal Process. 60(3), 1149–1158 (2012)

    Article  MathSciNet  Google Scholar 

  55. P.Y. Yalamov, Improvements of some bounds on the stability of fast Helmholtz solvers. Numer. Algorithms 26(1), 11–20 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Yavne, An economical method for calculating the discrete Fourier transform, in Proceedings of AFIPS Fall Joint Computer Conference, vol. 33 (1968), pp. 115–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plonka, G., Potts, D., Steidl, G., Tasche, M. (2018). Fast Fourier Transforms. In: Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04306-3_5

Download citation

Publish with us

Policies and ethics