Skip to main content

Prony Method for Reconstruction of Structured Functions

  • Chapter
  • First Online:
Numerical Fourier Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The recovery of a structured function from sampled data is a fundamental problem in applied mathematics and signal processing. In Sect. 10.1, we consider the parameter estimation problem, where the classical Prony method and its relatives are described. In Sect. 10.2, we study frequently used methods for solving the parameter estimation problem, namely MUSIC (MUltiple Signal Classification), APM (Approximate Prony Method), and ESPRIT (Estimation of Signal Parameters by Rotational Invariance).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Andersson, M. Carlsson, ESPRIT for multidimensional general grids (2017). arXiv e-prints

    Google Scholar 

  2. C. Aubel, H. Bölcskei, Vandermonde matrices with nodes in the unit disk and the large sieve. Appl. Comput. Harmon. Anal. (to appear, 2019)

    Google Scholar 

  3. H.H. Bauschke, P.L. Combettes, D.R. Luke, Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  4. F.S.V. Bazán, Conditioning of rectangular Vandermonde matrices with nodes in the unit disk. SIAM J. Matrix Anal. Appl. 21, 679–693 (2000)

    Article  MathSciNet  Google Scholar 

  5. F.S.V. Bazán, P.L. Toint, Error analysis of signal zeros from a related companion matrix eigenvalue problem. Appl. Math. Lett. 14(7), 859–866 (2001)

    Article  MathSciNet  Google Scholar 

  6. R. Beinert, G. Plonka, Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21(6), 1169–1198 (2015)

    Article  MathSciNet  Google Scholar 

  7. R. Beinert, G. Plonka, Sparse phase retrieval of one-dimensional signals by Prony’s method. Front. Appl. Math. Stat. 3, 5 (2017)

    Article  Google Scholar 

  8. J. Berent, P.L. Dragotti, T. Blu, Sampling piecewise sinusoidal signals with finite rate of innovation methods. IEEE Trans. Signal Process. 58(2), 613–625 (2010)

    Article  MathSciNet  Google Scholar 

  9. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1081–1089 (1986)

    Article  Google Scholar 

  10. W.L. Briggs, V.E. Henson, The DFT. An Owner’s Manual for the Discrete Fourier Transform (SIAM, Philadelphia, 1995)

    Google Scholar 

  11. O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. (Birkhäuser/Springer, Cham, 2016)

    Google Scholar 

  12. A. Cuyt, W.-S. Lee, Multivariate exponential analysis from the minimal number of samples. Adv. Comput. Math. 44(4), 987–1002 (2018)

    Article  MathSciNet  Google Scholar 

  13. C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)

    Google Scholar 

  14. G.R. de Prony, Essai éxperimental et analytique: sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. Ecole Polytech. 1, 24–76 (1795)

    Google Scholar 

  15. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  16. M. Ehler, S. Kunis, T. Peter, C. Richter, A randomized multivariate matrix pencil method for superresolution microscopy (2018). ArXiv e-prints

    Google Scholar 

  17. A.C. Fannjiang, The MUSIC algorithm for sparse objects: a compressed sensing analysis. Inverse Prob. 27(3), 035013 (2011)

    Article  MathSciNet  Google Scholar 

  18. F. Filbir, H.N. Mhaskar, J. Prestin, On the problem of parameter estimation in exponential sums. Constr. Approx. 35(2), 323–343 (2012)

    Article  MathSciNet  Google Scholar 

  19. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  20. G.H. Golub, P. Milanfar, J. Varah, A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21(4), 1222–1243 (1999–2000)

    Article  MathSciNet  Google Scholar 

  21. N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series (Springer, Heidelberg, 2013)

    Book  Google Scholar 

  22. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure. SSA and Related Techniques (Chapman & Hall/CRC, Boca Raton, 2001)

    Book  Google Scholar 

  23. G. Heinig, K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators (Akademie-Verlag, Berlin, 1984)

    Book  Google Scholar 

  24. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  25. Y. Hua, T.K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38(5), 814–824 (1990)

    Article  MathSciNet  Google Scholar 

  26. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  27. A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Prob. 18(4), 1025–1040 (2002)

    Article  MathSciNet  Google Scholar 

  28. V. Komornik, P. Loreti, Fourier Series in Control Theory (Springer, New York, 2005)

    MATH  Google Scholar 

  29. S. Kunis, T. Peter, T. Römer, U. von der Ohe, A multivariate generalization of Prony’s method. Linear Algebra Appl. 490, 31–47 (2016)

    Article  MathSciNet  Google Scholar 

  30. S. Kunis, H.M. Möller, T. Peter, U. von der Ohe, Prony’s method under an almost sharp multivariate Ingham inequality. J. Fourier Anal. Appl. 24(5), 1306–1318 (2018)

    Article  MathSciNet  Google Scholar 

  31. P. Lemke, S.S. Skiena, W.D. Smith, Reconstructing sets from interpoint distances, in Discrete and Computational Geometry (Springer, Berlin, 2003), pp. 597–631

    Book  Google Scholar 

  32. W. Liao, A. Fannjiang, MUSIC for single-snapshot spectral estimation: stability and super-resolution. Appl. Comput. Harmon. Anal. 40(1), 33–67 (2016)

    Article  MathSciNet  Google Scholar 

  33. R.D. Luke, Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37–50 (2005)

    Article  MathSciNet  Google Scholar 

  34. D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing (McGraw-Hill, Boston, 2005)

    Google Scholar 

  35. I. Markovsky, Structured low-rank approximation and its applications. Autom. J. IFAC 44(4), 891–909 (2008)

    Article  MathSciNet  Google Scholar 

  36. I. Markovsky, Low-Rank Approximation: Algorithms, Implementation, Applications, 2nd edn. (Springer, London, 2018)

    MATH  Google Scholar 

  37. A. Moitra, The threshold for super-resolution via extremal functions. Massachusetts Institute of Technology, Cambridge (2014, preprint)

    Google Scholar 

  38. A. Moitra, Super-resolution, extremal functions and the condition number of vandermonde matrices, in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (2015), pp. 821–830

    Google Scholar 

  39. H.L. Montgomery, R.C. Vaughan, Hilbert’s inequality. J. Lond. Math. Soc. 8, 73–82 (1974)

    Article  MathSciNet  Google Scholar 

  40. F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction (SIAM, Philadelphia, 2001)

    Book  Google Scholar 

  41. M. Osborne, G. Smyth, A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119–138 (1995)

    Article  MathSciNet  Google Scholar 

  42. H. Pan, T. Blu, M. Vetterli, Towards generalized FRI sampling with an application to source resolution in radioastronomy. IEEE Trans. Signal Process. 65(4), 821–835 (2017)

    Article  MathSciNet  Google Scholar 

  43. V. Pereyra, G. Scherer, Exponential Data Fitting and Its Applications (Bentham Science Publishers, Sharjah, 2010)

    Google Scholar 

  44. T. Peter, G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Prob. 29, 025001 (2013)

    Article  MathSciNet  Google Scholar 

  45. T. Peter, D. Potts, M. Tasche, Nonlinear approximation by sums of exponentials and translates. SIAM J. Sci. Comput. 33, 1920–1947 (2011)

    Article  MathSciNet  Google Scholar 

  46. T. Peter, G. Plonka, R. Schaback, Prony’s method for multivariate signals. Proc. Appl. Math. Mech. 15(1), 665–666 (2015)

    Article  Google Scholar 

  47. G. Plonka, M. Wischerhoff, How many Fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42(1–2), 117–137 (2013)

    Article  MathSciNet  Google Scholar 

  48. G. Plonka, K. Stampfer, I. Keller, Reconstruction of stationary and non-stationary signals by the generalized Prony method. Anal. Appl. (to appear, 2019)

    Google Scholar 

  49. G. Plonka, K. Wannenwetsch, A. Cuyt, W.-S. Lee, Deterministic sparse FFT for m-sparse vectors. Numer. Algorithms 78(1), 133–159 (2018)

    Article  MathSciNet  Google Scholar 

  50. D. Potts, M. Tasche, Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90, 1631–1642 (2010)

    Article  Google Scholar 

  51. D. Potts, M. Tasche, Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  52. D. Potts, M. Tasche, Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013)

    Article  MathSciNet  Google Scholar 

  53. D. Potts, M. Tasche, Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl. 441, 61–87 (2014)

    Article  MathSciNet  Google Scholar 

  54. D. Potts, M. Tasche, Fast ESPRIT algorithms based on partial singular value decompositions. Appl. Numer. Math. 88, 31–45 (2015)

    Article  MathSciNet  Google Scholar 

  55. D. Potts, M. Tasche, Error estimates for the ESPRIT algorithm, in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics (Birkhäuser/Springer, Cham, 2017), pp. 621–648

    Chapter  Google Scholar 

  56. D. Potts, M. Tasche, T. Volkmer, Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, Article 1 (2016)

    Google Scholar 

  57. J. Ranieri, A. Chebira, Y.M. Lu, M. Vetterli, Phase retrieval for sparse signals: uniqueness conditions (2013). arXiv:1308.3058v2

    Google Scholar 

  58. R. Roy, T. Kailath, ESPRIT - estimation of signal parameters via rotational invariance techniques, in Signal Processing, Part II, IMA Volumes in Mathematics and its Applications, vol. 23 (Springer, New York, 1990), pp. 369–411

    Google Scholar 

  59. S. Sahnoun, K. Usevich, P. Comon, Multidimensional ESPRIT for damped and undamped signals: algorithm, computations, and perturbation analysis. IEEE Trans. Signal Process. 65(22), 5897–5910 (2017)

    Article  MathSciNet  Google Scholar 

  60. T.K. Sarkar, O. Pereira, Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. 37, 48–55 (1995)

    Article  Google Scholar 

  61. T. Sauer, Prony’s method in several variables: symbolic solutions by universal interpolation. J. Symbolic Comput. 84, 95–112 (2018)

    Article  MathSciNet  Google Scholar 

  62. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  63. B. Seifert, H. Stolz, M. Tasche, Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness. J. Opt. Soc. Am. B 21(5), 1089–1097 (2004)

    Article  Google Scholar 

  64. B. Seifert, H. Stolz, M. Donatelli, D. Langemann, M. Tasche, Multilevel Gauss-Newton methods for phase retrieval problems. J. Phys. A 39(16), 4191–4206 (2006)

    Article  MathSciNet  Google Scholar 

  65. P. Shukla, P.L. Dragotti, Sampling schemes for multidimensional signals with finite rate of innovation. IEEE Trans. Signal Process. 55(7, Pt 2), 3670–3686 (2007)

    Article  MathSciNet  Google Scholar 

  66. M.R. Skrzipek, Signal recovery by discrete approximation and a Prony-like method. J. Comput. Appl. Math. 326, 193–203 (2017)

    Article  MathSciNet  Google Scholar 

  67. G. Steidl, A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9(3–4), 337–353 (1998)

    Article  MathSciNet  Google Scholar 

  68. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  69. L. Weiss, R.N. McDonough, Prony’s method, Z-transforms, and Padé approximation. SIAM Rev. 5, 145–149 (1963)

    Article  MathSciNet  Google Scholar 

  70. R.M. Young, An Introduction to Nonharmonic Fourier Series, revised 1st edn. (Academic, San Diego, 2001)

    MATH  Google Scholar 

  71. R. Zhang, G. Plonka, Optimal approximation with exponential sums by maximum likelihood modification of Prony’s method (2018, preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plonka, G., Potts, D., Steidl, G., Tasche, M. (2018). Prony Method for Reconstruction of Structured Functions. In: Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04306-3_10

Download citation

Publish with us

Policies and ethics