Skip to main content

Learning Discourse-Level Structures for Question Answering

  • Chapter
  • First Online:
Developing Enterprise Chatbots

Abstract

Traditional parse trees are combined together and enriched with anaphora and rhetoric information to form a unified representation for a paragraph of text. We refer to these representations as parse thickets. They are introduced to support answering complex questions, which include multiple sentences, to tackle as many constraints expressed in this question as possible. The question answering system is designed so that an initial set of answers, which is obtained by a TF*IDF or other keyword search model, is re-ranked. Passage re-ranking is performed using matching of the parse thickets of answers with the parse thicket of the question. To do that, a graph representation and matching technique for parse structures for paragraphs of text have been developed. We define the operation of generalization of two parse thickets as a measure of semantic similarity between paragraphs of text to be the maximal common sub-thicket of these parse thickets.

Passage re-ranking improvement via parse thickets is evaluated in a variety of chatbot question-answering domains with long questions. Using parse thickets improves search accuracy compared with the bag-of words, the pairwise matching of parse trees for sentences, and the tree kernel approaches. As a baseline, we use a web search engine API, which provides much more accurate search results than the majority of search benchmarks, such as TREC. A comparative analysis of the impact of various sources of discourse information on the search accuracy is conducted. An open source plug-in for SOLR is developed so that the proposed technology can be easily integrated with industrial search engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronovich L, Spiegler I (2007) CM-tree: a dynamic clustered index for similarity search in metric databases. Data Knowl Eng 63(3):919–946

    Article  Google Scholar 

  • Bar-Haim R, Dagan I, Greental I, Shnarch E (2007) Semantic inference at the lexical-syntactic level. In: AAAI’07 Proceedings of the 22nd national conference on artificial intelligence, Vancouver, BC, Canada, pp 871–876

    Google Scholar 

  • Barrena M, Jurado E, Márquez-Neila P, Pachón C (2010) A flexible framework to ease nearest neighbor search in multidimensional data spaces. Data Knowl Eng 69(1):116–136

    Article  Google Scholar 

  • Bertossi L, Chomicki J (2004) Query answering in inconsistent databases. In: Logics for emerging applications of databases. Springer, Berlin/Heidelberg, pp 43–83

    Chapter  Google Scholar 

  • Boulos J, Dalvi N, Mandhani B, Mathur S, Re C, Suciu D (2005) MYSTIQ: a system for finding more answers by using probabilities. SIGMOD, June 14–16, 2005, Baltimore, MD, USA

    Google Scholar 

  • Bouquet P, Kuper G, Scoz M, Zanobini S (2004) Asking and answering semantic queries. Meaning Coordination and Negotiation (MCN-04) at ISWC-2004, Hiroshima, Japan

    Google Scholar 

  • Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM (ACM) 16(9):575–577

    Article  Google Scholar 

  • Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the DL-lite family. J Autom Reason 39:385–429

    Article  MathSciNet  Google Scholar 

  • Chali Y, Joty SR, Hasan SA (2009) Complex question answering: unsupervised learning approaches and experiments. J Artif Intell Res 35:1–47

    Article  MathSciNet  Google Scholar 

  • Clark S, Curran JR (2004) Parsing the WSJ using CCG and log-linear models. In: 42nd ACL, Barcelona, Spain

    Google Scholar 

  • Collins M, Duffy N (2002) Convolution kernels for natural language. In: Proceedings of NIPS, pp 625–632

    Google Scholar 

  • Costa d, André L, Carvalho ES d M, da Silva AS, Berlt K, Bezerra A (2007) A cost-effective method for detecting web site replicas on search engine databases. Data Knowl Eng 62(3):421–437. https://doi.org/10.1016/j.datak.2006.08.010

    Article  Google Scholar 

  • Curran JR, Clark S, Bos J (2007) Linguistically motivated large-scale NLP with C&C and boxer. In: Proceedings of the ACL 2007 demonstrations session (ACL-07 demo), pp 33–36

    Google Scholar 

  • Düsterhöft A, Thalheim B (2004) Linguistic based search facilities in snowflake-like database schemes. Data Knowl Eng 48(2):177–198

    Article  Google Scholar 

  • Galitsky B (2003) Natural language question answering system: technique of semantic headers. Advanced Knowledge International, Magill

    Google Scholar 

  • Galitsky B (2012) Machine learning of syntactic parse trees for search and classification of text. Eng Appl AI 26(3):1072–1091

    Google Scholar 

  • Galitsky B (2017a) Improving relevance in a content pipeline via syntactic generalization. Eng Appl Artif Intell 58:1–26

    Article  Google Scholar 

  • Galitsky B (2017b) Matching parse thickets for open domain question answering. Data Knowl Eng 107:24–50

    Article  Google Scholar 

  • Galitsky B, Kuznetsov S (2008) Learning communicative actions of conflicting human agents. J Exp Theor Artif Intell 20(4):277–317

    Article  Google Scholar 

  • Galitsky B, Lebedeva N (2015) Recognizing documents versus meta-documents by tree kernel learning. In: FLAIRS conference, pp 540–545

    Google Scholar 

  • Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer complaints through graphs similarities in argumentative dialogue. Decis Support Syst 46(3):717–729

    Article  Google Scholar 

  • Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2010) From generalization of syntactic parse trees to conceptual graphs. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from information to intelligence, 18th international conference on conceptual structures, ICCS 2010. Lecture notes in artificial intelligence, vol 6208, pp 185–190

    Google Scholar 

  • Galitsky B, Dobrocsi G, de la Rosa JL, Sergei O (2011) Kuznetsov: using generalization of syntactic parse trees for taxonomy capture on the web. 19th international conference on conceptual structures, ICCS 2011, pp 104–117

    Google Scholar 

  • Galitsky B, de la Rosa JL, Dobrocsi G (2012) Inferring the semantic properties of sentences by mining syntactic parse trees. Data Knowl Eng 81–82:21–45

    Article  Google Scholar 

  • Galitsky B, Usikov D, Sergei O (2013) Kuznetsov: parse thicket representations for answering multi-sentence questions. In: 20th international conference on conceptual structures, ICCS 2013, Hissar, Bulgaria, pp 285–293

    Google Scholar 

  • Galitsky B, Ilvovsky D, Kuznetsov S (2015) Rhetoric map of an answer to compound queries. ACL, Beijing, China, vol 2, pp 681–686

    Google Scholar 

  • Google Code (2015) Product queries set. https://code.google.com/p/relevance-based-on-parse-trees/downloads/detail?name=Queries900set.xls

  • Harabagiu S, Lacatusu F, Hickl A (2006) Answering complex questions with random walk models. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR ’06). ACM, New York, NY, USA, pp 220–227

    Google Scholar 

  • Haussler D (1999) Convolution kernels on discrete structures. Technical report ucs-crl-99-10, University of California Santa Cruz

    Google Scholar 

  • Hong JL, Siew E-G, Egerton S (2010) Information extraction for search engines using fast heuristic techniques. Data Knowl Eng 69(2):169–196

    Article  Google Scholar 

  • Horrocks I, Tessaris S (2002) Querying the semantic web: a formal approach. The semantic web—ISWC 2002. Springer, Berlin/Heidelberg, pp 177–191

    Google Scholar 

  • Ilvovsky D (2014) Going beyond sentences when applying tree kernels. ACL student workshop, pp 56–63

    Google Scholar 

  • Jansen P, Surdeanu M, Clark P (2014) Discourse complements lexical semantics for non-factoid answer reranking. In: Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (ACL), 2014, Baltimore, MD, USA

    Google Scholar 

  • Joty SR, Carenini G, Ng RT, Mehdad Y (2013) Combining intra-and multi- sentential rhetorical parsing for document-level discourse analysis. In: ACL, vol 1, pp 486–496

    Google Scholar 

  • Joty S, Moschitti A (2014) Discriminative reranking of discourse parses using tree kernels. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP 2014), Doha, Qatar

    Google Scholar 

  • Kamp HA (1981) Theory of truth and semantic representation. In: Groenendijk JAG, Janssen TMV, Stokhof MBJ (eds) Formal methods in the study of language. Mathematisch Centrum, Amsterdam

    Google Scholar 

  • Kim J-J, Pezik P, Rebholz-Schuhmann D (2008) MedEvi: retrieving textual evidence of relations between biomedical concepts from Medline. Bioinformatics 24(11):1410–1412

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence IJCAI 1995, Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Lehrer A (1974) Semantic fields and lexical structure. Benjamins, Amsterdam

    Google Scholar 

  • Lei Y, Uren V, Motta E (2006) Semsearch: a search engine for the semantic web. In: Managing knowledge in a world of networks. Lecture notes in computer science, vol 4248, pp 238–245

    Google Scholar 

  • Li X, Roth D (2002) Learning question classifiers. In: Proceedings of the 19th international conference on computational linguistics - volume 1 (COLING ’02), vol 1. Association for Computational Linguistics, Stroudsburg, pp 1–7

    Google Scholar 

  • Mann WC, Taboada M (2015.) http://www.sfu.ca/rst/01intro/definitions.html. Last downloaded 13 June 2015

  • Mann WC, Thompson SA (1988) Rhetoric al structure theory: toward a functional theory of text organization. Text 8(3):243–281

    Article  Google Scholar 

  • Mann WC, Matthiessen CMIM, Thompson SA (1992) Rhetorical structure theory and text analysis. In: Mann WC, Thompson SA (eds) Discourse description: diverse linguistic analyses of a fund-raising text. John Benjamins, Amsterdam, pp 39–78

    Chapter  Google Scholar 

  • Mecca G, Raunich S, Pappalardo A (2007) A new algorithm for clustering search results. Data Knowl Eng 62(3):504–522

    Article  Google Scholar 

  • Moschitti A (2006) Efficient convolution kernels for dependency and constituent syntactic trees. In: Proceedings of the 17th European conference on machine learning, Berlin, Germany

    Google Scholar 

  • Moschitti A, Quarteroni S (2011) Linguistic kernels for answer re-ranking in question answering systems. Inf Process Manag 47(6):825–842

    Article  Google Scholar 

  • Natsev A, Milind R (2005) Naphade Jelena Tesic. Learning the semantics of multimedia queries and concepts from a small number of examples. MM’05, November 6–11, 2005, Singapore

    Google Scholar 

  • Palmer M (2009) Semlink: linking PropBank, VerbNet and FrameNet. In: Proceedings of the generative lexicon conference. September 2009, Pisa, Italy, GenLex-09

    Google Scholar 

  • Punyakanok V, Roth D, Yih W (2005) The necessity of syntactic parsing for semantic role labeling. IJCAI-05, Edinburgh, Scotland, UK, pp 1117–1123

    Google Scholar 

  • Searle J (1969) Speech acts: an essay in the philosophy of language. Cambridge University, Cambridge

    Book  Google Scholar 

  • Seo J, Simmons RF (1989) Syntactic graphs: a representation for the union of all ambiguous parse trees. Comput Linguist 15:15

    Google Scholar 

  • Severyn A, Moschitti A (2012) Fast support vector machines for convolution tree kernels. Data Min Knowl Disc 25:325–357

    Article  MathSciNet  Google Scholar 

  • Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2012) Syntactic dependency-based N-grams as classification features. LNAI 7630, pp 1–11

    Google Scholar 

  • Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2013) Syntactic N-grams as machine learning features for natural language processing. Expert Syst Appl 41(3):853–860

    Article  Google Scholar 

  • Steedman M (2000) The syntactic process. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Sun J, Zhang M, Tan C (2011) Tree sequence kernel for natural language. AAAI-25

    Google Scholar 

  • Tran T, Cimiano P, Rudolph S, Studer R (2007) Ontology-based interpretation of keywords for semantic search in “The semantic web”. Lecture notes in computer science, vol 4825, pp 523–536

    Google Scholar 

  • van Eijck J, Kamp H (1997) Representing discourse in context. Handbook of logic and language. Elsevier, Amsterdam, pp 179–237

    Book  Google Scholar 

  • Varlamis I, Stamou S (2009) Semantically driven snippet selection for supporting focused web searches. Data Knowl Eng 68(2):261–277. https://doi.org/10.1016/j.datak.2008.10.002

    Article  Google Scholar 

  • Vo NPA, Popescu O (2016) A multi-layer system for semantic textual similarity. In: 8th international conference on knowledge discovery and information retrieval, vol 1, pp 56–67

    Google Scholar 

  • Vo NPA, Popescu O (2019) Multi-layer and co-learning systems for semantic textual similarity, semantic relatedness and recognizing textual entailment. In: 8th international joint conference, IC3K 2016, Porto, Portugal, November 9–11, 2016, Revised selected papers, pp 54–77

    Google Scholar 

  • Wu J, Xuan Z, Pan D (2011) Enhancing text representation for classification tasks with semantic graph structures. Int J Innov Comput Inf Control (ICIC) 7(5(B)):2689–2698

    Google Scholar 

  • Zhang M, Che W, Zhou G, Aw A, Tan C, Liu T, Li S (2008) Semantic role labeling using a grammar-driven convolution tree kernel. IEEE Trans Audio Speech Lang Process 16(7):1315–1329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galitsky, B. (2019). Learning Discourse-Level Structures for Question Answering. In: Developing Enterprise Chatbots. Springer, Cham. https://doi.org/10.1007/978-3-030-04299-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04299-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04298-1

  • Online ISBN: 978-3-030-04299-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics