Skip to main content

Rotating Black Holes

  • Chapter
  • First Online:
  • 2173 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 952))

Abstract

For this last lecture, we will focus on particular properties of astrophysically realistic 4d black holes, which are rotating and uncharged. We will concentrate on the stationary Kerr black hole solution which is the final state of collapse of matter. After reviewing its main features, we will study the maximally spinning limit of the Kerr solution, the extremal Kerr black hole. It is a very interesting solution because it admits near horizon limits with enhanced conformal symmetry. The limiting near-horizon geometries share features with anti-de Sitter spacetimes where holography and therefore quantum gravity is most understood. The attempts (with successes and failures) to describe the extremal Kerr black hole with holographic techniques is called the Kerr/CFT correspondence and will be briefly reviewed here.

The final part of these lectures will be devoted to the analysis of gravitational perturbations around Kerr geometries. The Kerr black hole is currently under experimental tests by the LIGO/Virgo gravitational wave detectors. The final stages of black hole mergers consist in a quasi-normal mode ringing of the resulting black hole which is well-described by perturbation theory around the Kerr black hole. Since the Kerr black hole only depends upon two parameters, namely the mass and angular momentum, the resonance frequencies of the black hole are characteristic signatures of Einstein gravity. The emerging experimental science of black hole spectroscopy will soon test the limits of Einstein gravity and look for possible deviations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As an anecdote on ULB connections, it is amusing to notice that this theory was also independently developed at ULB by Géhéniau in 1957 (who supervised the PhD of M. Henneaux 23 years later).

  2. 2.

    To be precise, there are two additional gravitational potentials that are usually discarded because considered unphysical: the NUT charge, a sort of magnetic analogue to the mass but which generates closed timelike curves, and the acceleration parameter, which introduces conical wire singularities.

References

  1. A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, No dynamics in the extremal Kerr throat. J. High Energy Phys. 09, 044 (2009). arXiv:0906.2376 [hep-th]; http://dx.doi.org/10.1088/1126-6708/2009/09/044

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Aretakis, The wave equation on extreme Reissner-Nordstrom black hole spacetimes: stability and instability results. arXiv:1006.0283 [math.AP]

  3. T. Azeyanagi, G. Compère, N. Ogawa, Y. Tachikawa, S. Terashima, Higher-derivative corrections to the asymptotic virasoro symmetry of 4d extremal black holes. Prog. Theor. Phys. 122, 355–384 (2009). arXiv:0903.4176 [hep-th]; http://dx.doi.org/10.1143/PTP.122.355

    Article  ADS  Google Scholar 

  4. V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari, J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?. J. High Energy Phys. 02, 017 (2010). arXiv:0906.3272 [hep-th]

  5. J.M. Bardeen, G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS(2) x S 2. Phys. Rev. D60, 104030 (1999). arXiv:hep-th/9905099 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.60.104030

  6. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972). http://dx.doi.org/10.1086/151796

    Article  ADS  Google Scholar 

  7. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973). http://dx.doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  Google Scholar 

  8. J.D. Bekenstein, Black holes and the second law. Nuovo Cimento Lettere 4, 737–740 (1972)

    Article  ADS  Google Scholar 

  9. E. Berti’s homepage, Ringdown. https://pages.jh.edu/~eberti2/ringdown/. Accessed 05 Sep 2018

  10. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). arXiv:0905.2975 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/26/16/163001

    Article  ADS  MathSciNet  Google Scholar 

  11. R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977). http://dx.doi.org/10.1093/mnras/179.3.433

    Article  ADS  Google Scholar 

  12. I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole superradiance from Kerr/CFT. J. High Energy Phys. 04, 019 (2010). arXiv:0907.3477 [hep-th]; http://dx.doi.org/10.1007/JHEP04(2010)019

  13. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986). http://dx.doi.org/10.1007/BF01211590

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968). http://dx.doi.org/10.1103/PhysRev.174.1559

    Article  ADS  Google Scholar 

  15. B. Carter, Black hole equilibrium states, in Black Holes - Les astres occlus, ed. by C. Dewitt, B.S. Dewitt (Gordon and Breach Science Publishers, New York, 1973), pp. 61–124. Reprinted as Carter, B. Gen Relativ Gravit 41, 2873 (2009). https://doi.org/10.1007/s10714-009-0888-5

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Carter, Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D16, 3395–3414 (1977). http://dx.doi.org/10.1103/PhysRevD.16.3395

    ADS  MathSciNet  Google Scholar 

  17. A. Castro, A. Maloney, A. Strominger, Hidden conformal symmetry of the Kerr black hole. Phys. Rev. D82, 024008 (2010). arXiv:1004.0996 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.82.024008

  18. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1985/1992), 646 pp.

    Google Scholar 

  19. M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993). http://dx.doi.org/10.1103/PhysRevLett.70.9

    Article  ADS  Google Scholar 

  20. D. Christodoulou, S. Klainerman, The global nonlinear stability of the Minkowski space. Princeton Legacy Library, 1993

    Google Scholar 

  21. A. Coley, R. Milson, V. Pravda, A. Pravdova, Classification of the Weyl tensor in higher dimensions. Class. Quant. Grav. 21, L35–L42 (2004). arXiv:gr-qc/0401008 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/21/7/L01

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Compère, The Kerr/CFT correspondence and its extensions: a comprehensive review. Living Rev. Rel. 15, 11 (2012). arXiv:1203.3561 [hep-th]

  23. G. Compère, K. Hajian, A. Seraj, M.M. Sheikh-Jabbari, Wiggling throat of extremal black holes. J. High Energy Phys. 10, 093 (2015). arXiv:1506.07181 [hep-th]; http://dx.doi.org/10.1007/JHEP10(2015)093

  24. G. Compère, K. Hajian, A. Seraj, M. Sheikh-Jabbari, Extremal rotating black holes in the near-horizon limit: phase space and symmetry algebra (2015). arXiv:1503.07861 [hep-th]

  25. G. Compère, P. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and killing symmetries of AdS3 gravity: holographic vs boundary gravitons. J. High Energy Phys. 01, 080 (2016). arXiv:1511.06079 [hep-th]; http://dx.doi.org/10.1007/JHEP01(2016)080

  26. G. Compère, K. Fransen, T. Hertog, J. Long, Gravitational waves from plunges into Gargantua (2018). arXiv:1712.07130 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. G.B. Cook, M. Zalutskiy, Gravitational perturbations of the Kerr geometry: high-accuracy study. Phys. Rev. D90(12), 124021 (2014). arXiv:1410.7698 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.90.124021

  28. M. Cvetic, F. Larsen, Conformal symmetry for black holes in four dimensions. J. High Energy Phys. 09, 076 (2012). arXiv:1112.4846 [hep-th]; http://dx.doi.org/10.1007/JHEP09(2012)076

  29. M. Dafermos, I. Rodnianski, Y. Shlapentokh-Rothman, Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case —a— < M. arXiv:1402.7034 [gr-qc]

  30. O.J.C. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. J. High Energy Phys. 08, 101 (2009). arXiv:0906.2380 [hep-th]; http://dx.doi.org/10.1088/1126-6708/2009/08/101

    Article  MathSciNet  Google Scholar 

  31. V. Frolov, P. Krtous, D. Kubiznak, Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 20(1), 6 (2017). arXiv:1705.05482 [gr-qc]; http://dx.doi.org/10.1007/s41114-017-0009-9

  32. R. Fujita, W. Hikida, Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quant. Grav. 26, 135002 (2009). arXiv:0906.1420 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/26/13/135002

    Article  ADS  MathSciNet  Google Scholar 

  33. S.E. Gralla, A. Lupsasca, A. Strominger, Observational signature of high spin at the event horizon telescope. arXiv:1710.11112 [astro-ph.HE]

  34. M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D80, 124008 (2009). arXiv:0809.4266 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.80.124008

  35. T. Hartman, C.A. Keller, B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit. J. High Energy Phys. 09, 118 (2014). arXiv:1405.5137 [hep-th]; http://dx.doi.org/10.1007/JHEP09(2014)118

  36. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). http://dx.doi.org/10.1007/BF02345020

    Article  ADS  MathSciNet  Google Scholar 

  37. E.G. Kalnins, W. Miller Jr., G.C. Williams, Separability of wave equations. Fundam. Theor. Phys. 100, 33–52 (1999). http://dx.doi.org/10.1007/978-94-017-0934-7_3

    MathSciNet  MATH  Google Scholar 

  38. D. Kapec, P. Mitra, A.-M. Raclariu, A. Strominger, 2D stress tensor for 4D gravity. Phys. Rev. Lett. 119(12), 121601 (2017). arXiv:1609.00282 [hep-th]; http://dx.doi.org/10.1103/PhysRevLett.119.121601

  39. W. Kinnersley, Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969). http://dx.doi.org/10.1063/1.1664958

    Article  ADS  MathSciNet  Google Scholar 

  40. R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). arXiv:1102.4014 [gr-qc]; http://dx.doi.org/10.1103/RevModPhys.83.793

    Article  ADS  Google Scholar 

  41. E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A402, 285–298 (1985). http://dx.doi.org/10.1098/rspa.1985.0119

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Lupsasca, A.P. Porfyriadis, Y. Shi, Critical emission from a high-spin black hole. arXiv:1712.10182 [gr-qc]

  43. C. Merlin, A. Ori, L. Barack, A. Pound, M. van de Meent, Completion of metric reconstruction for a particle orbiting a Kerr black hole. Phys. Rev. D94(10), 104066 (2016). arXiv:1609.01227 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.94.104066

  44. K. Murata, H.S. Reall, N. Tanahashi, What happens at the horizon(s) of an extreme black hole?. Class. Quant. Grav. 30, 235007 (2013). arXiv:1307.6800 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/30/23/235007

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Ori, Evolution of linear gravitational and electromagnetic perturbations inside a Kerr black hole. Phys. Rev. D 61(2), 024001 (2000). http://dx.doi.org/10.1103/PhysRevD.61.024001

  46. S. Pasterski, S.-H. Shao, A. Strominger, Flat space amplitudes and conformal symmetry of the celestial sphere. Phys. Rev. D96(6), 065026 (2017). arXiv:1701.00049 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.96.065026

  47. A.Z. Petrov, The classification of spaces defining gravitational fields. Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta im. V. I. Ulyanovicha-Lenina [Scientific Proceedings of Kazan State University, named after V.I. Ulyanov-Lenin] 114(8), 55–69 (1954)). Jubilee (1804–1954) Collection 114 (1954)

    Google Scholar 

  48. T. Piran, J. Shaham, J. Katz, High efficiency of the Penrose mechanism for particle collisions. Astrophys. J. Lett. 196, L107 (1975). http://dx.doi.org/10.1086/181755

    Article  ADS  Google Scholar 

  49. W.H. Press, Long wave trains of gravitational waves from a vibrating black hole. Astrophys. J. 170, L105 (1971). http://dx.doi.org/10.1086/180849

    Article  ADS  Google Scholar 

  50. T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957). http://dx.doi.org/10.1103/PhysRev.108.1063

    Article  ADS  MathSciNet  Google Scholar 

  51. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2004). http://www.cambridge.org/gb/academic/subjects/physics/theoretical-physics-and-mathematical-physics/exact-solutions-einsteins-field-equations-2nd-edition?format=PB

    MATH  Google Scholar 

  52. S.A. Teukolsky, Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114–1118 (1972). http://dx.doi.org/10.1103/PhysRevLett.29.1114

    Article  ADS  Google Scholar 

  53. S.A. Teukolsky, The Kerr metric. Class. Quant. Grav. 32(12), 124006 (2015). arXiv:1410.2130 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/32/12/124006

  54. K.S. Thorne, Disk accretion onto a black hole. 2. Evolution of the hole. Astrophys. J. 191, 507–520 (1974). http://dx.doi.org/10.1086/152991

    Article  ADS  Google Scholar 

  55. K. Thorne, C. Nolan, The Science of Interstellar (W. W. Norton, New York, 2014). https://books.google.be/books?id=PbWYBAAAQBAJ

    Google Scholar 

  56. P.K. Townsend, Black holes: lecture notes. arXiv:gr-qc/9707012 [gr-qc]

  57. Virgo, LIGO Scientific Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837 [gr-qc]; http://dx.doi.org/10.1103/PhysRevLett.116.061102

  58. C.V. Vishveshwara, Stability of the Schwarzschild metric. Phys. Rev. D1, 2870–2879 (1970). http://dx.doi.org/10.1103/PhysRevD.1.2870

    ADS  Google Scholar 

  59. R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]; http://dx.doi.org/10.12942/lrr-2001-6

  60. B.F. Whiting, Mode stability of the Kerr black hole. J. Math. Phys. 30, 1301 (1989). http://dx.doi.org/10.1063/1.528308

    Article  ADS  MathSciNet  Google Scholar 

  61. H. Yang, D.A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, Y. Chen, Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D86, 104006 (2012). arXiv:1207.4253 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.86.104006

  62. H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti, Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown. Phys. Rev. D88(4), 044047 (2013). arXiv:1307.8086 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.88.044047

  63. Y.B. Zel’Dovich, Generation of waves by a rotating body. Sov. J. Exp. Theor. Phys. Lett. 14, 180 (1971)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Compère, G. (2019). Rotating Black Holes. In: Advanced Lectures on General Relativity. Lecture Notes in Physics, vol 952. Springer, Cham. https://doi.org/10.1007/978-3-030-04260-8_4

Download citation

Publish with us

Policies and ethics