Skip to main content

Asymptotically Flat Spacetimes

  • Chapter
  • First Online:
Book cover Advanced Lectures on General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 952))

Abstract

For the next lecture, we consider four-dimensional asymptotically flat spacetimes, which are the solutions of General Relativity with localised energy-momentum sources. We will start with a review of the work of Penrose on the conformal compactification of asymptotically flat spacetimes in order to get a global view on the asymptotic structure. We will then concentrate on the properties of radiative fields by reviewing the work of van der Burg, Bondi, Metzner and Sachs of 1962. One may think at first that the group of asymptotic symmetries of radiative spacetimes is the Poincaré group, but a larger group appears, the BMS group which contains so-called supertranslations. Additional symmetries, known as superrotations, also play a role and we shall briefly discuss them too. Finally, we will give some comments on the scattering problem in General Relativity. We will show that the extended asymptotic group gives conserved quantities once junction conditions are fixed at spatial infinity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking it implies that Ψ = 0 up to the lowest l = 0, 1 spherical harmonics. However, these harmonics are exactly zero modes of the differential operator ε C(A D B) D C Ψ defined in C AB. Therefore we can set them to zero.

  2. 2.

    Similarly to the construction of the AdS 3 phase space of stationary field configurations with boundary fields turned on that was described in (2.57) or for the asymptotically flat analogue (2.73), one can construct gravitational vacua and Schwarzschild black holes that carry a supertranslation field, see [15, 16].

  3. 3.

    Note that the effect also appears in the analysis performed by Blanchet and Damour in the post-Newtonian formalism [5, 6].

  4. 4.

    The attentive reader might already notice that such an observable is not clearly the difference between a quantity in the initial and final state. Instead \(\int _{u_i}^{u_f} du \: \Psi \) is non-local in retarded time! Therefore, though it bears analogy with the displacement memory effect, the spin memory effect is not (yet?) proven to be a memory effect at the first place! For a discussion of memory effects associated with Diff(S 2) symmetries, see [17].

  5. 5.

    Shortcut: just formally replace u →−v everywhere while leaving r unchanged.

References

  1. G. Barnich, C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 105, 111103 (2010). arXiv:0909.2617 [gr-qc]; http://dx.doi.org/10.1103/PhysRevLett.105.111103

  2. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. J. High Energy Phys. 1005, 062 (2010). arXiv:1001.1541 [hep-th]; http://dx.doi.org/10.1007/JHEP05(2010)062

  3. G. Barnich, C. Troessaert, BMS charge algebra. J. High Energy Phys. 12, 105 (2011). arXiv:1106.0213 [hep-th]; http://dx.doi.org/10.1007/JHEP12(2011)105

  4. L. Bieri, P. Chen, S.-T. Yau, Null asymptotics of solutions of the Einstein-Maxwell equations in general relativity and gravitational radiation. Adv. Theor. Math. Phys. 15(4), 1085–1113 (2011). arXiv:1011.2267 [math.DG]; http://dx.doi.org/10.4310/ATMP.2011.v15.n4.a5

    Article  MathSciNet  Google Scholar 

  5. L. Blanchet, T. Damour, Tail transported temporal correlations in the dynamics of a gravitating system. Phys. Rev. D37, 1410 (1988). http://dx.doi.org/10.1103/PhysRevD.37.1410

    ADS  Google Scholar 

  6. L. Blanchet, T. Damour, Hereditary effects in gravitational radiation. Phys. Rev. D46, 4304–4319 (1992). http://dx.doi.org/10.1103/PhysRevD.46.4304

    ADS  MathSciNet  Google Scholar 

  7. H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A269, 21–52 (1962). http://dx.doi.org/10.1098/rspa.1962.0161

  8. R. Bousso, M. Porrati, Soft hair as a soft wig. Class. Quant. Grav. 34(20), 204001 (2017). arXiv:1706.00436 [hep-th]; http://dx.doi.org/10.1088/1361-6382/aa8be2

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Cachazo, A. Strominger, Evidence for a new soft graviton theorem (2014, unpublished). arXiv:1404.4091 [hep-th]

  10. M. Campiglia, A. Laddha, Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D90(12), 124028 (2014). arXiv:1408.2228 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.90.124028

  11. M. Campiglia, A. Laddha, New symmetries for the Gravitational S-matrix. J. High Energy Phys. 04, 076 (2015). arXiv:1502.02318 [hep-th]; http://dx.doi.org/10.1007/JHEP04(2015)076

  12. D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments. Phys. Rev. Lett. 67, 1486–1489 (1991). http://dx.doi.org/10.1103/PhysRevLett.67.1486

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Christodoulou, S. Klainerman, The Global nonlinear stability of the Minkowski space. Princeton Legacy Library, 1993

    Google Scholar 

  14. G. Compère, A. Fiorucci, Asymptotically flat spacetimes with BMS3 symmetry. Class. Quant. Grav. 34(20), 204002 (2017). arXiv:1705.06217 [hep-th]; http://dx.doi.org/10.1088/1361-6382/aa8aad

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Compère, J. Long, Vacua of the gravitational field. J. High Energy Phys. 07, 137 (2016). arXiv:1601.04958 [hep-th]; http://dx.doi.org/10.1007/JHEP07(2016)137

  16. G. Compère, J. Long, Classical static final state of collapse with supertranslation memory. Class. Quant. Grav. 33(19), 195001 (2016). arXiv:1602.05197 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/33/19/195001

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Compère, A. Fiorucci, R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra. J. High Energy Phys. 2018, 200 (2018). https://doi.org/10.1007/JHEP11(2018)200

    Article  ADS  Google Scholar 

  18. J. de Boer, S.N. Solodukhin, A holographic reduction of Minkowski space-time. Nucl. Phys. B665, 545–593 (2003). arXiv:hep-th/0303006 [hep-th]; http://dx.doi.org/10.1016/S0550-3213(03)00494-2

  19. E.E. Flanagan, D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra. Phys. Rev. D95(4), 044002 (2017). arXiv:1510.03386 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.95.044002

  20. S.W. Hawking, M.J. Perry, A. Strominger, Soft hair on black holes. Phys. Rev. Lett. 116(23), 231301 (2016). arXiv:1601.00921 [hep-th]; http://dx.doi.org/10.1103/PhysRevLett.116.231301

  21. T. He, V. Lysov, P. Mitra, A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem. J. High Energy Phys. 05, 151 (2015) . arXiv:1401.7026 [hep-th]. http://dx.doi.org/10.1007/JHEP05(2015)151

  22. M. Henneaux, C. Troessaert, BMS group at spatial infinity: the Hamiltonian (ADM) approach. J. High Energy Phys. 03, 147 (2018). arXiv:1801.03718 [gr-qc]. http://dx.doi.org/10.1007/JHEP03(2018)147

  23. P.D. Lasky, E. Thrane, Y. Levin, J. Blackman, Y. Chen, Detecting gravitational-wave memory with LIGO: implications of GW150914. Phys. Rev. Lett. 117(6), 061102 (2016). arXiv:1605.01415 [astro-ph.HE]; http://dx.doi.org/10.1103/PhysRevLett.117.061102

  24. M. Mirbabayi, M. Porrati, Dressed hard states and black hole soft hair. Phys. Rev. Lett. 117(21), 211301 (2016). arXiv:1607.03120 [hep-th]. http://dx.doi.org/10.1103/PhysRevLett.117.211301

  25. D.A. Nichols, Spin memory effect for compact binaries in the post-Newtonian approximation. Phys. Rev. D95(8), 084048 (2017). arXiv:1702.03300 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.95.084048

  26. S. Pasterski, A. Strominger, A. Zhiboedov, New gravitational memories. J. High Energy Phys. 12, 053 (2016). arXiv:1502.06120 [hep-th]; http://dx.doi.org/10.1007/JHEP12(2016)053

  27. R. Penrose, The geometry of impulsive gravitational waves, in General Relativity: Papers in Honour of J.L. Synge, ed. by L. O’Raifeartaigh (Clarendon Press, Oxford, 1972), pp. 101–115

    Google Scholar 

  28. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times. Proc. R. Soc. Lond. A270, 103–126 (1962). http://dx.doi.org/10.1098/rspa.1962.0206

  29. A. Strominger, On BMS invariance of gravitational scattering. J. High Energy Phys. 07, 152 (2014). arXiv:1312.2229 [hep-th]; http://dx.doi.org/10.1007/JHEP07(2014)152

  30. A. Strominger, Black hole information revisited (2017, unpublished). arXiv:1706.07143 [hep-th]

  31. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (Princeton University Press, Princeton, 2018). ISBN 978-0-691-17950-6

    Book  Google Scholar 

  32. A. Strominger, A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems. J. High Energy Phys. 01, 086 (2016). arXiv:1411.5745 [hep-th]; http://dx.doi.org/10.1007/JHEP01(2016)086

  33. A. Strominger, A. Zhiboedov, Superrotations and black hole pair creation. Class. Quant. Grav. 34(6), 064002 (2017). arXiv:1610.00639 [hep-th]; http://dx.doi.org/10.1088/1361-6382/aa5b5f

    Article  ADS  MathSciNet  Google Scholar 

  34. K.S. Thorne, Gravitational-wave bursts with memory: the Christodoulou effect. Phys. Rev. D45(2), 520–524 (1992) . http://dx.doi.org/10.1103/PhysRevD.45.520

    ADS  MathSciNet  Google Scholar 

  35. C. Troessaert, The BMS4 algebra at spatial infinity. arXiv:1704.06223 [hep-th]

  36. S. Weinberg, Infrared photons and gravitons. Phys. Rev. 140, B516–B524 (1965) . http://dx.doi.org/10.1103/PhysRev.140.B516

    Article  ADS  MathSciNet  Google Scholar 

  37. Y.B. Zel’dovich, A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars. Sov. Astron. 18, 17 (1974)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Compère, G. (2019). Asymptotically Flat Spacetimes. In: Advanced Lectures on General Relativity. Lecture Notes in Physics, vol 952. Springer, Cham. https://doi.org/10.1007/978-3-030-04260-8_3

Download citation

Publish with us

Policies and ethics