Skip to main content

Neuro-inflammatory Disorders in Women

  • Chapter
  • First Online:
  • 775 Accesses

Abstract

Many neuro-inflammatory disorders have a predilection for women; even if there is no female predominance, neuro-inflammatory conditions in women pose a management challenge for several reasons. Disease activity of these conditions may change during pregnancy and commonly increases in the postpartum period. Immunomodulating agents that are used to suppress the disease activity may have a negative impact on fertility, pregnancy, and fetal outcomes, and on infants who are breastfed. Adverse effects of immunosuppressants extend beyond the reproductive issues and may include bone loss, increased risk of cancers, and infectious complications. The successful management of women with these disorders not only involves understanding and early recognition of the adverse effects of immunosuppressants but also active prevention of the adverse outcomes through counseling about contraceptive choices, safety monitoring, risk surveillance, and other strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xanthos DN, Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53.

    Article  CAS  Google Scholar 

  2. Hohlfeld R, Kerschensteiner M, Meinl E. Dual role of inflammation in CNS disease. Neurology. 2007;68(22 Suppl 3):S58–63; discussion S91–6.

    Article  Google Scholar 

  3. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article  CAS  Google Scholar 

  4. Armangue T, Moris G, Cantarin-Extremera V, Conde CE, Rostasy K, Erro ME, et al. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology. 2015;85(20):1736–43.

    Article  CAS  Google Scholar 

  5. Beeson PB. Age and sex associations of 40 autoimmune diseases. Am J Med. 1994;96(5):457–62.

    Article  CAS  Google Scholar 

  6. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80.

    Article  CAS  Google Scholar 

  7. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8(9):737–44.

    Article  CAS  Google Scholar 

  8. Liang Y, Tsoi LC, Xing X, Beamer MA, Swindell WR, Sarkar MK, et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat Immunol. 2017;18(2):152–60.

    Google Scholar 

  9. Panchanathan R, Choubey D. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol Immunol. 2013;53(1–2):15–23.

    Article  CAS  Google Scholar 

  10. Bove R, McHenry A, Hellwig K, Houtchens M, Razaz N, Smyth P, et al. Multiple sclerosis in men: management considerations. J Neurol. 2016;263(7):1263–73.

    Article  Google Scholar 

  11. Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Mult Scler. 2014;20(5):520–6.

    Article  CAS  Google Scholar 

  12. Bielecki B, Mattern C, Ghoumari AM, Javaid S, Smietanka K, Abi Ghanem C, et al. Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc Natl Acad Sci U S A. 2016;113(51):14829–34.

    Article  CAS  Google Scholar 

  13. Koelman DL, Chahin S, Mar SS, Venkatesan A, Hoganson GM, Yeshokumar AK, et al. Acute disseminated encephalomyelitis in 228 patients: a retrospective, multicenter US study. Neurology. 2016;86(22):2085–93.

    Article  CAS  Google Scholar 

  14. Tenembaum S, Chitnis T, Ness J, Hahn JS, International Pediatric MSSG. Acute disseminated encephalomyelitis. Neurology. 2007;68(16 Suppl 2):S23–36.

    Article  Google Scholar 

  15. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10(12):835–44.

    Article  Google Scholar 

  16. Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis. 2012;54(7):899–904.

    Article  CAS  Google Scholar 

  17. Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015;194(4):1534–44.

    Article  CAS  Google Scholar 

  18. Tilburgs T, Evans JH, Crespo AC, Strominger JL. The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface. Proc Natl Acad Sci U S A. 2015;112(43):13312–7.

    Article  CAS  Google Scholar 

  19. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A. 2013;110(3):E231–40.

    Article  CAS  Google Scholar 

  20. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol. 2009;183(11):7023–30.

    Article  CAS  Google Scholar 

  21. Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med. 2013;19(5):548–56.

    Article  CAS  Google Scholar 

  22. Zenclussen AC. Adaptive immune responses during pregnancy. Am J Reprod Immunol. 2013;69(4):291–303.

    Article  CAS  Google Scholar 

  23. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.

    Article  CAS  Google Scholar 

  24. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339(5):285–91.

    Article  CAS  Google Scholar 

  25. Fabian M. Pregnancy in the setting of multiple sclerosis. Continuum (Minneap Minn). 2016;22(3):837–50.

    Google Scholar 

  26. Kim W, Kim SH, Nakashima I, Takai Y, Fujihara K, Leite MI, et al. Influence of pregnancy on neuromyelitis optica spectrum disorder. Neurology. 2012;78(16):1264–7.

    Article  CAS  Google Scholar 

  27. Fragoso YD, Adoni T, Bichuetti DB, Brooks JB, Ferreira ML, Oliveira EM, et al. Neuromyelitis optica and pregnancy. J Neurol. 2013;260(10):2614–9.

    Article  Google Scholar 

  28. Shimizu Y, Fujihara K, Ohashi T, Nakashima I, Yokoyama K, Ikeguch R, et al. Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum disorder. Mult Scler. 2016;22(11):1413–20.

    Article  Google Scholar 

  29. Norwood F, Dhanjal M, Hill M, James N, Jungbluth H, Kyle P, et al. Myasthenia in pregnancy: best practice guidelines from a U.K. multispecialty working group. J Neurol Neurosurg Psychiatry. 2014;85(5):538–43.

    Article  Google Scholar 

  30. Boldingh MI, Maniaol AH, Brunborg C, Weedon-Fekjaer H, Verschuuren JJ, Tallaksen CM. Increased risk for clinical onset of myasthenia gravis during the postpartum period. Neurology. 2016;87(20):2139–45.

    Article  Google Scholar 

  31. Gayed M, Gordon C. Pregnancy and rheumatic diseases. Rheumatology (Oxford). 2007;46(11):1634–40.

    Article  CAS  Google Scholar 

  32. Andersen SL, Olsen J, Carle A, Laurberg P. Hyperthyroidism incidence fluctuates widely in and around pregnancy and is at variance with some other autoimmune diseases: a Danish population-based study. J Clin Endocrinol Metab. 2015;100(3):1164–71.

    Article  CAS  Google Scholar 

  33. de Man YA, Dolhain RJ, van de Geijn FE, Willemsen SP, Hazes JM. Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum. 2008;59(9):1241–8.

    Article  Google Scholar 

  34. Buchel E, Van Steenbergen W, Nevens F, Fevery J. Improvement of autoimmune hepatitis during pregnancy followed by flare-up after delivery. Am J Gastroenterol. 2002;97(12):3160–5.

    Article  Google Scholar 

  35. Airas L, Saraste M, Rinta S, Elovaara I, Huang YH, Wiendl H, et al. Immunoregulatory factors in multiple sclerosis patients during and after pregnancy: relevance of natural killer cells. Clin Exp Immunol. 2008;151(2):235–43.

    Article  CAS  Google Scholar 

  36. Lateef A, Petri M. Management of pregnancy in systemic lupus erythematosus. Nat Rev Rheumatol. 2012;8(12):710–8.

    Article  CAS  Google Scholar 

  37. Davoudi V, Keyhanian K, Bove RM, Chitnis T. Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e288.

    Article  Google Scholar 

  38. Shosha E, Pittock SJ, Flanagan E, Weinshenker BG. Neuromyelitis optica spectrum disorders and pregnancy: interactions and management. Mult Scler. 2017;23(14):1808–17.

    Article  Google Scholar 

  39. Jones BG, Penkert RR, Xu B, Fan Y, Neale G, Gearhart PJ, et al. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Mol Immunol. 2016;77:97–102.

    Article  CAS  Google Scholar 

  40. Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.

    Article  CAS  Google Scholar 

  41. Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol. 2010;6(2):82–8.

    Article  CAS  Google Scholar 

  42. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  Google Scholar 

  43. Allen CS, Yeung JH, Vandermeer B, Homik J. Bisphosphonates for steroid-induced osteoporosis. Cochrane Database Syst Rev. 2016;10:CD001347.

    PubMed  Google Scholar 

  44. Overman RA, Toliver JC, Yeh JY, Gourlay ML, Deal CL. United States adults meeting 2010 American College of Rheumatology criteria for treatment and prevention of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2014;66(11):1644–52.

    Article  Google Scholar 

  45. Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62(11):1515–26.

    Article  Google Scholar 

  46. Mok CC, Ho LY, Ma KM. Switching of oral bisphosphonates to denosumab in chronic glucocorticoid users: a 12-month randomized controlled trial. Bone. 2015;75:222–8.

    Article  CAS  Google Scholar 

  47. Santana IU, Gomes Ado N, Lyrio LD, Rios Grassi MF, Santiago MB. Systemic lupus erythematosus, human papillomavirus infection, cervical pre-malignant and malignant lesions: a systematic review. Clin Rheumatol. 2011;30(5):665–72.

    Article  Google Scholar 

  48. Nguyen ML, Flowers L. Cervical cancer screening in immunocompromised women. Obstet Gynecol Clin N Am. 2013;40(2):339–57.

    Article  Google Scholar 

  49. Curtis KM, Tepper NK, Jatlaoui TC, Berry-Bibee E, Horton LG, Zapata LB, et al. U.S. medical eligibility criteria for contraceptive use, 2016. MMWR Recomm Rep. 2016;65(3):1–103.

    Article  Google Scholar 

  50. Vukusic S, Marignier R. Multiple sclerosis and pregnancy in the ‘treatment era’. Nat Rev Neurol. 2015;11(5):280–9.

    Article  Google Scholar 

  51. Gotestam Skorpen C, Hoeltzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016;75(5):795–810.

    Article  Google Scholar 

  52. Hellwig K, Rockhoff M, Herbstritt S, Borisow N, Haghikia A, Elias-Hamp B, et al. Exclusive breastfeeding and the effect on postpartum multiple sclerosis relapses. JAMA Neurol. 2015;72(10):1132–8.

    Article  Google Scholar 

  53. Pakpoor J, Disanto G, Lacey MV, Hellwig K, Giovannoni G, Ramagopalan SV. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J Neurol. 2012;259(10):2246–8.

    Article  Google Scholar 

  54. Westerlind H, Ramanujam R, Uvehag D, Kuja-Halkola R, Boman M, Bottai M, et al. Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden. Brain. 2014;137(Pt 3):770–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vodopivec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vodopivec, I. (2019). Neuro-inflammatory Disorders in Women. In: O’Neal, M. (eds) Neurology and Psychiatry of Women. Springer, Cham. https://doi.org/10.1007/978-3-030-04245-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04245-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04244-8

  • Online ISBN: 978-3-030-04245-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics