Skip to main content

Neurologic Imaging in Pregnancy

  • Chapter
  • First Online:
Neurology and Psychiatry of Women

Abstract

Selecting the appropriate neurologic imaging modality for evaluation of a pregnant patient is a common challenge faced by medical providers. It requires balancing the benefits of using the technique that provides the greatest diagnostic utility with the potential risks to the fetus which that technique may incur. This decision process is made more difficult by the lack of high quality human studies to date that have evaluated the safety of these different imaging methods. The aim of this chapter is to review the available literature on the most common neurologic imaging modalities and their use in pregnancy, in order to provide guidance on selection of the optimal imaging choice in different clinical situations.

*J.M. Thon and R.W. Regenhardt are co-first authors of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 May 2019

    This book was inadvertently published with the below errors:

References

  1. Bove RM, Klein JP. Neuroradiology in women of childbearing age. Continuum (Minneap Minn). 2014;20(1 Neurology of Pregnancy):23–41.

    Google Scholar 

  2. ACOG Committee on Obstetric Practice. ACOG Committee Opinion. Number 299, September 2004 (replaces No. 158, September 1995). Guidelines for diagnostic imaging during pregnancy. Obstet Gynecol. 2004;104(3):647–51.

    Article  Google Scholar 

  3. Manual on Contrast Media v10.3 – American College of Radiology [Internet]. [cited 2017 Oct 25]. Available from: https://www.acr.org/Quality-Safety/Resources/Contrast-Manual.

  4. Webb JAW, Thomsen HS, Morcos SK. Members of contrast media safety committee of european society of urogenital radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15(6):1234–40.

    Article  Google Scholar 

  5. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 546.

    Google Scholar 

  6. Osei EK, Faulkner K. Fetal doses from radiological examinations. Br J Radiol. 1999;72(860):773–80.

    Article  CAS  Google Scholar 

  7. Wakeford R, Little MP. Risk coefficients for childhood cancer after intrauterine irradiation: a review. Int J Radiat Biol. 2003;79(5):293–309.

    Article  CAS  Google Scholar 

  8. Yamazaki JN, Schull WJ. Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989. JAMA. 1990;264(5):605–9.

    Article  CAS  Google Scholar 

  9. Nelson JA, Livingston GK, Moon RG. Mutagenic evaluation of radiographic contrast media. Investig Radiol. 1982;17(2):183–5.

    Article  CAS  Google Scholar 

  10. Grüters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol. 2011;8(2):104–13.

    Article  Google Scholar 

  11. Klingebiel R, Kentenich M, Bauknecht H-C, Masuhr F, Siebert E, Busch M, et al. Comparative evaluation of 64-slice CT angiography and digital subtraction angiography in assessing the cervicocranial vasculature. Vasc Health Risk Manag. Dove Press. 2008;4(4):901–7.

    Article  Google Scholar 

  12. Manninen A-L, Isokangas J-M, Karttunen A, Siniluoto T, Nieminen MTA. Comparison of radiation exposure between diagnostic CTA and DSA examinations of cerebral and cervicocerebral vessels. Am J Neuroradiol. 2012;33(11):2038–42.

    Article  Google Scholar 

  13. Moon EK, Wang W, Newman JS, Bayona-Molano MDP. Challenges in interventional radiology: the pregnant patient. Semin Interv Radiol. Thieme Medical Publishers. 2013;30(4):394–402.

    Article  Google Scholar 

  14. Grzyska U, Freitag J, Zeumer H. Selective cerebral intraarterial DSA. Complication rate and control of risk factors. Neuroradiology. 1990;32(4):296–9.

    Article  CAS  Google Scholar 

  15. Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. Multidisciplinary Digital Publishing Institute (MDPI). 2009;6(6):1778–98.

    Article  Google Scholar 

  16. Kanal E, Shellock FG, Talagala L. Safety considerations in MR imaging. Radiology. 1990;176(3):593–606.

    Article  CAS  Google Scholar 

  17. Chen MM, Coakley FV, Kaimal A, Laros RK. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112(2 Pt 1):333–40.

    Article  Google Scholar 

  18. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG, Froelich JW, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30.

    Article  Google Scholar 

  19. Committee on Obstetric Practice. Committee opinion No. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol. 2017;130(4):e210–6.

    Article  Google Scholar 

  20. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    Article  Google Scholar 

  21. Prola-Netto J, Woods M, Roberts VHJ, Sullivan EL, Miller CA, Frias AE, et al. Gadolinium chelate safety in pregnancy: barely detectable gadolinium levels in the juvenile nonhuman primate after in utero exposure. Radiology. 2017;286:162534.

    Google Scholar 

  22. Marcos HB, Semelka RC, Worawattanakul S. Normal placenta: gadolinium-enhanced dynamic MR imaging. Radiology. 1997;205(2):493–6.

    Article  CAS  Google Scholar 

  23. Tanaka YO, Sohda S, Shigemitsu S, Niitsu M, Itai Y. High temporal resolution dynamic contrast MRI in a high risk group for placenta accreta. Magn Reson Imaging. 2001;19(5):635–42.

    Article  CAS  Google Scholar 

  24. Sundgren PC, Leander P. Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging. 2011;34(4):750–7.

    Article  Google Scholar 

  25. Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017;46(2):338–53.

    Article  Google Scholar 

  26. De Santis M, Straface G, Cavaliere AF, Carducci B, Caruso A. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet Gynecol Scand. 2007;86(1):99–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thon, J.M., Regenhardt, R.W., Klein, J.P. (2019). Neurologic Imaging in Pregnancy. In: O’Neal, M. (eds) Neurology and Psychiatry of Women. Springer, Cham. https://doi.org/10.1007/978-3-030-04245-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04245-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04244-8

  • Online ISBN: 978-3-030-04245-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics