Skip to main content

Multivariate Chaotic Time Series Prediction: Broad Learning System Based on Sparse PCA

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Abstract

The sparse principle component analysis (SPCA) comprehensively considers the maximal variance of principal components and the sparseness of the load factor, thus making up for the defects of the traditional PCA. In this paper, we are committed to propose a novel approach based on broad learning system with sparse PCA named as SPCA-BLS for chaotic time series prediction. We also develop the incremental learning algorithms to rapidly rebuild the network without full retraining if the network is considered to be expanded. The core of the SPCA-BLS is that we achieved the dimensionality reduction and the features extraction of high-dimensional data and the dynamical reconstruction of the network without the entire retraining. The method has been simulated on an artificial and an actual data sets and the experimental results in regression accuracy confirm the characteristics and effectiveness of the SPCA-BLS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weigend, A.S.: Time series prediction: forecasting the future and understanding the past. Routledge (2018)

    Google Scholar 

  2. Han, M., Zhong, K., Qiu, T., Han, B.: Interval type-2 fuzzy neural networks for chaotic time series prediction: a concise overview. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2834356

  3. Ak, R., Fink, O., Zio, E.: Two machine learning approaches for short-term wind speed time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1734–1747 (2016)

    Article  MathSciNet  Google Scholar 

  4. Han, M., Ren, W., Xu, M., Qiu, T.: Nonuniform state space reconstruction for multivariate chaotic time series. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2816657

  5. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A 374(2065) (2016). 20150202

    Article  MathSciNet  Google Scholar 

  6. Hu, Z., Pan, G., Wang, Y., Wu, Z.: Sparse principal component analysis via rotation and truncation. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 875–890 (2016)

    Article  MathSciNet  Google Scholar 

  7. Zou, H., Xue, L.: A selective overview of sparse principal component analysis. Proc. IEEE 106(8), 1311–1320 (2018)

    Article  Google Scholar 

  8. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the lasso. J. Comput. Graph. Stat. 12(3), 531–547 (2003)

    Article  MathSciNet  Google Scholar 

  9. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018)

    Article  MathSciNet  Google Scholar 

  11. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  12. Huang, Y., Kou, G., Peng, Y.: Nonlinear manifold learning for early warnings in financial markets. Eur. J. Oper. Res. 258(2), 692–702 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  14. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)

    Article  Google Scholar 

  15. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 61773087) and the Fundamental Research Funds for the Central Universities (DUT17ZD216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Han, M., Feng, S. (2018). Multivariate Chaotic Time Series Prediction: Broad Learning System Based on Sparse PCA. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics