Skip to main content

Linear Periodic Discriminant Analysis of Multidimensional Signals

  • Conference paper
  • First Online:
  • 1736 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Abstract

Extracting relevant information from noisy multidimensional signals has tremendous impacts in numerous applications, ranging from audio separation to electrophysiological recording analysis. Linear filters are often considered to reconstruct and interpret the latent sources generating the data. Known properties of the sources can be used to guide their separation. In neuroscience, the cortical processes underlying perception in different modalities (visual, auditory, ...) is often studied using electroencephalography (EEG) during periodic stimulation, eliciting periodic activity in neural sources, some of which being specific to the considered modality. Whereas current approaches extract sources either periodic or discriminative, none of them accounts for both aspects at once. This paper proposes several methods extracting periodic sources specific between two classes, hence termed as Linear Periodic Discriminant Analysis methods. They are validated on synthetic data and EEG recordings of subjects to whom periodic stimulation from two modalities is applied. The methods highlight modality-specific periodic responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bedard, C., Kroeger, H., Destexhe, A.: Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. rev. let. 97(11), 118102 (2006)

    Google Scholar 

  2. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  3. Colon, E., Legrain, V., Mouraux, A.: Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Clin. Neurophysiol. 42(5), 315–323 (2012)

    Article  Google Scholar 

  4. De Keyser, R., van den Broeke, E.N., Courtin, A., Dufour, A., Mouraux, A.: Event-related brain potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess the spinothalamic system in humans. Clin. Neurophysiol. 129(5), 1011–1019 (2018)

    Article  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    Google Scholar 

  6. Hyvärinen, A.: Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371(1984), 20110534 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  8. Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)

    Article  Google Scholar 

  9. Krzanowski, W.: Principles of Multivariate Analysis, vol. 23. OUP Oxford, Oxford (2000)

    Google Scholar 

  10. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2014)

    Google Scholar 

  11. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE TBME 58(2), 355–362 (2011)

    Google Scholar 

  12. Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Advances in Neural Information Processing Systems, pp. 145–151 (1996)

    Google Scholar 

  13. Mouraux, A., Iannetti, G.D., Colon, E., Nozaradan, S., Legrain, V., Plaghki, L.: Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J. Neurosci. 31(16), 6079–6087 (2011)

    Article  Google Scholar 

  14. Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M.: Spatial filtering of EEG signals to identify periodic brain activity patterns. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M.D., Ward, D. (eds.) LVA/ICA 2018. LNCS, vol. 10891, pp. 524–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93764-9_48

    Chapter  Google Scholar 

  15. Nakanishi, M., Wang, Y., Wang, Y.T., Mitsukura, Y., Jung, T.P.: A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 24(06), 1450019 (2014)

    Article  Google Scholar 

  16. Samadi, S., Amini, L., Cosandier-Rimélé, D., Soltanian-Zadeh, H., Jutten, C.: Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG. IEEE Trans. Biomed. Eng. 60(7), 1983–1992 (2013)

    Article  Google Scholar 

  17. Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008)

    Article  Google Scholar 

  18. Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Signal Process. 58(4), 2363–2374 (2010)

    Article  MathSciNet  Google Scholar 

  19. Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing Systems, pp. 807–813 (2001)

    Google Scholar 

  20. Vincent, E., Bertin, N., Gribonval, R., Bimbot, F.: From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process. Mag. 31(3), 107–115 (2014)

    Article  Google Scholar 

  21. Wu, W., Chen, Z., Gao, S., Brown, E.N.: A probabilistic framework for learning robust common spatial patterns. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 4658–4661 (2009)

    Google Scholar 

Download references

Acknowledgments

DM and CdB are Research Fellows of the FNRS. The authors gratefully thank Prof. Christian Jutten for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dounia Mulders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M. (2018). Linear Periodic Discriminant Analysis of Multidimensional Signals. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics