Skip to main content

Abstract

For a long time experimental approach was main method for material design. However, experimental approach has many drawbacks. With the development of the computing sciences, a new era of synthesis of alloys or different materials began. Scientists proposed and developed various approaches for the synthesis of new alloys which relies on phase diagrams, Thermo-Calc, machine learning, neural network and fuzzy concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hashimoto, K., Kimura, M., Mizuhara, Y.: Alloy design of gammatitanium aluminides based on phase diagrams. Intermetallics 6, 667–672 (1998)

    Article  Google Scholar 

  2. Andersson, J.O., Helander, T., Höglund, L., Shi, P., Sundman, B.: Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26, 273–312 (2002)

    Article  Google Scholar 

  3. Weinert, M., Schneider, G., Podloucky, R., Redinger, J.: FLAPW: applications and implementations. J. Phys.: Condens. Matter 21(8), 084201 (2009)

    Google Scholar 

  4. Abreu, M.P.: On the development of computational tools for the design of beam assemblies for Boron neutron capture therapy. J. Comput. Aided Mater. Des. 14, 235–251 (2007)

    Article  Google Scholar 

  5. Takahashi, K., Tanaka, Y.: Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016)

    Article  Google Scholar 

  6. Elton, D.C., Boukouvalas, Z., Butrico, M.S., Fuge, M.D., Chung, P.W.: Applying machine learning techniques to predict the properties of energetic materials (2018)

    Google Scholar 

  7. Dehghannasiri, R., Xue, D., Balachandran, P.V., Yousefi, M.R., Dalton, L.A., Lookman, T., Dougherty, E.R.: Optimal experimental design for materials discovery. Comput. Mater. Sci. 129, 311–322 (2017)

    Article  Google Scholar 

  8. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Corporation, p. 287 (2009)

    Google Scholar 

  9. White, A.A.: Big data are shaping the future of materials science. MRS Bull. 38, 594–595 (2013)

    Article  Google Scholar 

  10. Fellet, M.: Big Data Analytics Deliver Materials Science Insights (2017). http://www.lindau-nobel.org/blog-big-data-analytics-deliver-materials-science-insights/

  11. Hill, J., Mulholland, G., Persson, K., Seshadri, R., Wolverton, C., Meredig, B.: Materials science with large-scale data and informatics: unlocking new opportunities. MRS Bull. 41, 399–409 (2016)

    Article  Google Scholar 

  12. http://www.materialsproject.org

  13. http://oqmd.org

  14. www.mrl.ucsb.edu:8080/datamine/thermoelectric.jsp

  15. https://citrination.com

  16. Seshadri, R., Sparks, T.D.: Perspective: interactive material property databases through aggregation of literature data. APL Mater. 4(5), 053206 (2016)

    Article  Google Scholar 

  17. Belsky, A., Hellenbrandt, M., Karen, V.L., Luksch, P.: Acta Crystallogr. Sect. B 58, 364 (2002)

    Article  Google Scholar 

  18. Allen, F.H.: Acta Crystallogr. Sect. B 58, 380 (2002)

    Article  Google Scholar 

  19. Downs, R.T., Hall-Wallace, M.: Am. Miner. 88, 247 (2003)

    Article  Google Scholar 

  20. Gražulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., Le Bail, A.: J. Appl. Crystallogr. 42, 726 (2009)

    Article  Google Scholar 

  21. Villars, P.: Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (2007)

    Google Scholar 

  22. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.N., Bourne, P.E.: Nucleic Acid Res. 28, 235 (2000)

    Article  Google Scholar 

  23. https://nomad-coe.eu/

  24. Jain, A., Persson, K.A., Ceder, G.: The materials genome initiative: data sharing and the impact of collaborative ab initio databases. J. APL Mater. 4(5), 1–14 (2016)

    Google Scholar 

  25. Sumpter, B.G., Vasudevan, R.K., Potok, T., Kalinin, S.V.: A bridge for accelerating materials by design. NPJ Comput. Mater. 1, 15008 (2015)

    Article  Google Scholar 

  26. Christodoulou, J.A.: Integrated computational materials engineering and materials genome initiative: accelerating materials innovation. Adv. Mater. Process. 171(3), 28–31 (2013)

    Google Scholar 

  27. White, A.A.: Universities prepare next-generation workforce to benefit from the materials genome initiative. MRS Bull. 38, 673–674 (2013)

    Article  Google Scholar 

  28. Olson, G.B., Kuehmann, C.J.: Materials genomics: from CALPHAD to flight. Scr. Mater. 70, 25–30 (2014)

    Article  Google Scholar 

  29. White, A.A.: Interdisciplinary collaboration, robust funding cited as key to success of materials genome initiative program. MRS Bull. 38, 894–896 (2013)

    Article  Google Scholar 

  30. White, A.: Workshop makes recommendations to increase diversity in materials science and engineering. MRS Bull. 38, 120–122 (2013)

    Google Scholar 

  31. Ceder, G., Hautier, G., Jain, A., Ong, S.P.: Recharging lithium battery research with first-principles methods. MRS Bull. 36, 185–191 (2011)

    Google Scholar 

  32. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

  33. Aliev, R.A., Aliev, R.R.: Soft Computing and Its Application. World Scientific, New Jersey (2001)

    Book  Google Scholar 

  34. Pedrycz, W., Peters, J.F.: Computational Intelligence in Software Engineering. Advances in Fuzzy Systems, Applications and Theory, vol. 16. World Scientific, Singapoure (1998)

    Google Scholar 

  35. Babanli, M.B., Huseynov, V.M.: Z-number-based alloy selection problem. In: 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, Vienna, Austria. Procedia Comput. Sci. 102, 183–189 (2016)

    Article  Google Scholar 

  36. Chen, S.-M.: A new method for tool steel materials selection under fuzzy environment. Fuzzy Sets Syst. 92, 265–274 (1997)

    Article  Google Scholar 

  37. Cheng, J., Feng, Y., Tan, J., Wei, W.: Optimization of injection mold based on fuzzy moldability evaluation. J. Mater. Process. Technol. 21, 222–228 (2008)

    Article  Google Scholar 

  38. Lee, Y.-H., Kopp, R.: Application of fuzzy control for a hydraulicforging machine. Fuzzy Sets Syst. 99, 99–108 (2001)

    Article  Google Scholar 

  39. Elishakoff, I., Ferracuti, B.: Fuzzy sets based interpretation of the safety factor. Fuzzy Sets Syst. 157, 2495–2512 (2006)

    Article  MathSciNet  Google Scholar 

  40. Rao, H.S., Mukherjee, A.: Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites. Comput. Mater. Sci. 5, 307–322 (1996)

    Article  Google Scholar 

  41. Hancheng, Q., Bocai, X., Shangzheng, L., Fagen, W.: Fuzzy neural network modeling of material properties. J. Mater. Process. Technol. 122, 196–200 (2002)

    Article  Google Scholar 

  42. Chen, D., Li, M., Wu, S.: Modeling of microstructure and constitutive relation during super plastic deformation by fuzzy-neural network. J. Mater. Process. Technol. 142, 197–202 (2003)

    Article  Google Scholar 

  43. Odejobi, O.A., Umoru, L.E.: Applications of soft computing techniques in materials engineering: a review. Afr. J. Math. Comput. Sci. Res. 2(7), 104–131 (2009)

    Google Scholar 

  44. Datta, S., Chattopadhyay, P.P.: Soft computing techniques in advancement of structural metals. Int. Mater. Rev. 58, 475–504 (2013)

    Article  Google Scholar 

  45. Tajdari, M., Mehraban, A.G., Khoogar, A.R.: Shear strength prediction of Ni–Ti alloys manufactured by powder metallurgy using fuzzy rule-based model. Mater. Des. 31, 1180–1185 (2010)

    Article  Google Scholar 

  46. Babanli, M.B.: Synthesis of new materials by using fuzzy and big data concepts. Procedia Comput. Sci. 120, 104–111 (2017)

    Article  Google Scholar 

  47. Nandi, A.K., Pratihar, D.K.: Automatic design of fuzzy logic controller using a genetic algorithm-to predict power requirement and surface finish in grinding. J. Mater. Process. Technol. 148, 288–300 (2004)

    Article  Google Scholar 

  48. Sakundarini, N., Taha, Z., Abdul-Rashid, S.H., Ghazilla, R.A.R.: Incorporation of high recyclability material selection in computer aided design. Mater. Des. 56, 740–749 (2014)

    Article  Google Scholar 

  49. Morinaga, M., Kato, M., Kamimura, T., Fukumoto, M., Harada, I., Kubo, K.: Theoretical design of b-type titanium alloys. In: Titanium 1992, Science and Technology, Proceedings of 7th International Conference on Titanium, San Diego, CA, USA, pp. 276–283 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babanli, M.B. et al. (2019). Review on the New Materials Design Methods. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Sadikoglu, F. (eds) 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing — ICAFS-2018. ICAFS 2018. Advances in Intelligent Systems and Computing, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-030-04164-9_124

Download citation

Publish with us

Policies and ethics