Skip to main content

Hepatocellular Cancer Induced by Infection

  • Chapter
  • First Online:
Microbiome and Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 1155 Accesses

Abstract

Hepatocellular carcinoma is the fifth most common cancer and second leading cause of cancer death worldwide. Chronic viral infections contribute to approximately three-fourths of these cancers either as direct carcinogens or indirectly mediated through progressive hepatic fibrosis and cirrhosis. Bacteria, specifically the gut microbiome, also contributes to the in the genesis of hepatocellular carcinoma. Obesity-related nonalcoholic fatty liver disease and alcoholic liver disease, the major non-viral causes of chronic liver disease predisposing to liver cancer, alter the composition of the gut microbiome, which appears to foster development and progression of pre-malignant and malignant liver neoplasms. Emerging data implicates patterns of dysbiosis with alterations of bile acid metabolism, insulin resistance, fibrogenesis, and gut barrier integrity that contribute to intrahepatic inflammatory signaling and carcinogenesis. In vitro, small animal model, and human data supporting the role of chronic viral infection and bacterial derangements in hepatocarcinogenesis will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    CAS  Google Scholar 

  2. Stewart BW, Wild C, International Agency for Research on Cancer, World Health Organization (2014) World cancer report 2014. Lyon, France. International Agency for Research on Cancer, WHO Press, World Health Organization, Geneva http://WX3ZG9RE3E.search.serialssolutions.com/?V=1.0&L=WX3ZG9RE3E&S=JCs&C=TC0001199484&T=marc&tab=BOOKS

    Google Scholar 

  3. Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2(8256):1129–1133

    Article  CAS  PubMed  Google Scholar 

  4. Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG (2013) Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett 5(4):1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trevisani F, Frigerio M, Santi V, Grignaschi A, Bernardi M (2010) Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig Liver Dis 42(5):341–347

    Article  PubMed  Google Scholar 

  6. Perumpail RB, Wong RJ, Ahmed A, Harrison SA (2015) Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci 60(10):3142–3148

    Article  CAS  PubMed  Google Scholar 

  7. Serper MA, Taddei TH, Mehta R et al (2017) Association of provider specialty and multi-disciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology 152(8):1954–1964

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Sun H, Xie Z et al (2016) Improved survival of patients with hepatocellular carcinoma and disparities by age, race, and socioeconomic status by decade, 1983–2012. Oncotarget 7(37):59820–59833

    PubMed  PubMed Central  Google Scholar 

  9. Yang JD, Ahmed Mohammed H, Harmsen WS, Enders F, Gores GJ, Roberts LR (2017) Recent trends in the epidemiology of hepatocellular carcinoma in Olmsted County, Minnesota: a US population-based study. J Clin Gastroenterol 51(8):742–748

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levrero M, Zucman-Rossi J (2016) Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 64(1 Suppl):S84–S101

    Article  CAS  PubMed  Google Scholar 

  11. Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R (1990) The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature 343(6257):457–461

    Article  CAS  PubMed  Google Scholar 

  12. Hohne M, Schaefer S, Seifer M, Feitelson MA, Paul D, Gerlich WH (1990) Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 9(4):1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guerrieri F, Belloni L, D'Andrea D et al (2017) Genome-wide identification of direct HBx genomic targets. BMC Genomics 18(1):184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huang SN, Chisari FV (1995) Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21(3):620–626

    CAS  PubMed  Google Scholar 

  15. Moriya K, Fujie H, Shintani Y et al (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4(9):1065–1067

    Article  CAS  PubMed  Google Scholar 

  16. Mason WS, Gill US, Litwin S et al (2016) HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151(5):986–998 e984

    Article  CAS  PubMed  Google Scholar 

  17. Jacob JR, Sterczer A, Toshkov IA et al (2004) Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors. Hepatology 39(4):1008–1016

    Article  CAS  PubMed  Google Scholar 

  18. Tennant BC, Toshkov IA, Peek SF et al (2004) Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 127(5 Suppl 1):S283–S293

    Article  PubMed  Google Scholar 

  19. Liang HW, Wang N, Wang Y et al (2016) Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J Hepatol 64(2):278–291

    Article  CAS  PubMed  Google Scholar 

  20. Lau CC, Sun T, Ching AK et al (2014) Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25(3):335–349

    Article  CAS  PubMed  Google Scholar 

  21. Kgatle MM, Setshedi M, Hairwadzi HN (2016) Hepatoepigenetic alterations in viral and nonviral-induced hepatocellular carcinoma. Biomed Res Int 2016:3956485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Naas T, Ghorbani M, Alvarez-Maya I et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86(Pt 8):2185–2196

    Article  CAS  PubMed  Google Scholar 

  23. Lerat H, Honda M, Beard MR et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122(2):352–365

    Article  CAS  PubMed  Google Scholar 

  24. Klopstock N, Katzenellenbogen M, Pappo O et al (2009) HCV tumor promoting effect is dependent on host genetic background. PLoS One 4(4):e5025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang J, Ishigaki Y, Takegami T (2015) Hepatitis C virus NS3 protein modulates the biological behaviors of malignant hepatocytes by altering the expression of host cell microRNA. Mol Med Rep 12(4):5109–5115

    Article  CAS  PubMed  Google Scholar 

  26. Majumder M, Steele R, Ghosh AK et al (2003) Expression of hepatitis C virus non-structural 5A protein in the liver of transgenic mice. FEBS Lett 555(3):528–532

    Article  CAS  PubMed  Google Scholar 

  27. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV (1998) Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188(2):341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaplan DE, Ikeda F, Li Y et al (2008) Peripheral virus-specific T-cell interleukin-10 responses develop early in acute hepatitis C infection and become dominant in chronic hepatitis. J Hepatol 48(6):903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamoto N, Kaplan DE, Coleclough J et al (2008) Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134(7):1927–1937 1937 e1921–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamoto N, Cho H, Shaked A et al (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 5(2):e1000313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Park JJ, Wong DK, Wahed AS et al (2016) Hepatitis B virus—specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology 150(3):684–695 e685

    Article  CAS  PubMed  Google Scholar 

  32. Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK (2013) From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer 2(3-4):367–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fox JG, Feng Y, Theve EJ et al (2010) Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59(1):88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Sung CY, Lee N et al (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A 113(9):E1306–E1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukui H, Brauner B, Bode JC, Bode C (1991) Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol 12(2):162–169

    Article  CAS  PubMed  Google Scholar 

  37. Yu LX, Yan HX, Liu Q et al (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52(4):1322–1333

    Article  CAS  PubMed  Google Scholar 

  38. Zhang HL, Yu LX, Yang W et al (2012) Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 57(4):803–812

    Article  PubMed  Google Scholar 

  39. Bode JC (1980) Alcohol and the gastrointestinal tract. Ergeb Inn Med Kinderheilkd 45:1–75

    CAS  PubMed  Google Scholar 

  40. Ruiz AG, Casafont F, Crespo J et al (2007) Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17(10):1374–1380

    Article  PubMed  Google Scholar 

  41. Gomes JM, Costa JA, Alfenas RC (2017) Metabolic endotoxemia and diabetes mellitus: a systematic review. Metab Clin Exp 68:133–144

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Parsson H, Soltesz V, Johansson K, Andersson R (1995) Bacterial translocation and intestinal capillary permeability following major liver resection in the rat. J Surg Res 58(4):351–358

    Article  CAS  PubMed  Google Scholar 

  43. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG (1995) Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108(1):218–224

    Article  CAS  PubMed  Google Scholar 

  44. Nanji AA, Khettry U, Sadrzadeh SM (1994) Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 205(3):243–247

    Article  CAS  PubMed  Google Scholar 

  45. Elamin E, Jonkers D, Juuti-Uusitalo K et al (2012) Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model. PLoS One 7(4):e35008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elamin E, Masclee A, Dekker J, Jonkers D (2014) Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation. Am J Physiol Gastrointest Liver Physiol 306(8):G677–G685

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W, Wu N, Wang X et al (2015) Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 5:8096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grat M, Wronka KM, Krasnodebski M et al (2016) Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant Proc 48(5):1687–1691

    Article  CAS  PubMed  Google Scholar 

  49. Aly AM, Adel A, El-Gendy AO, Essam TM, Aziz RK (2016) Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog 8(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Acharya C, Bajaj JS (2017) Gut microbiota and complications of liver disease. Gastroenterol Clin N Am 46(1):155–169

    Article  Google Scholar 

  51. Bull-Otterson L, Feng W, Kirpich I et al (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8(1):e53028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi Y, Jeon WK, Hwang SJ et al (2011) The role of the gut barrier function in the pathophysiology of viral liver cirrhosis. Hepato-Gastroenterology 58(109):1244–1247

    PubMed  Google Scholar 

  53. Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI et al (2013) Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann Hepatol 12(2):301–307

    Article  PubMed  Google Scholar 

  54. Ye D, Guo S, Al-Sadi R, Ma TY (2011) MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141(4):1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Al-Sadi R, Ye D, Boivin M et al (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sonnenberg GF, Monticelli LA, Alenghat T et al (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336(6086):1321–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bajaj JS, Heuman DM, Hylemon PB et al (2014) Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 39(10):1113–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao H, Zhao C, Dong Y et al (2015) Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease. Toxicol Lett 234(3):194–200

    Article  CAS  PubMed  Google Scholar 

  59. Achiwa K, Ishigami M, Ishizu Y et al (2016) DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem Biophys Res Commun 470(1):15–21

    Article  CAS  PubMed  Google Scholar 

  60. Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101

    Article  CAS  PubMed  Google Scholar 

  61. Joyce SA, Gahan CG (2016) Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7:313–333

    Article  CAS  PubMed  Google Scholar 

  62. Wolf MJ, Adili A, Piotrowitz K et al (2014) Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26(4):549–564

    Article  CAS  PubMed  Google Scholar 

  63. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136(1):65–80

    Article  PubMed  Google Scholar 

  64. Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Zhuang ZJ, Bian DX et al (2014) Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clin Exp Pharmacol Physiol 41(7):482–488

    Article  CAS  PubMed  Google Scholar 

  66. Yang L, Miura K, Zhang B et al (2017) TRIF differentially regulates hepatic steatosis and inflammation/fibrosis in mice. Cell Mol Gastroenterol Hepatol 3(3):469–483

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alisi A, Panera N, Balsano C, Nobili V (2011) Activation of the endotoxin/toll-like receptor 4 pathway: the way to go from nonalcoholic steatohepatitis up to hepatocellular carcinoma. Hepatology 53(3):1069

    Article  PubMed  Google Scholar 

  68. Cengiz M, Ozenirler S, Elbeg S (2015) Role of serum toll-like receptors 2 and 4 in non-alcoholic steatohepatitis and liver fibrosis. J Gastroenterol Hepatol 30(7):1190–1196

    Article  CAS  PubMed  Google Scholar 

  69. Liu H, Li J, Tillman B, Morgan TR, French BA, French SW (2014) TLR3/4 signaling is mediated via the NFkappaB-CXCR4/7 pathway in human alcoholic hepatitis and non-alcoholic steatohepatitis which formed Mallory-Denk bodies. Exp Mol Pathol 97(2):234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharifnia T, Antoun J, Verriere TG et al (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309(4):G270–G278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim S, Park S, Kim B, Kwon J (2016) Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease. Sci Rep 6:27849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David E. Kaplan or Kyong-Mi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaplan, D.E., Chang, KM., Sanyal, A. (2019). Hepatocellular Cancer Induced by Infection. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics