Skip to main content

Cardiac Surgery Acute Kidney Injury: Controversy in Renal Support

  • Chapter
  • First Online:

Part of the book series: Difficult Decisions in Surgery: An Evidence-Based Approach ((DDSURGERY))

Abstract

Acute kidney injury (AKI) is a common complication after cardiac surgery and is associated with increased patient morbidity and mortality including hospital readmissions. Cardiac surgery-associated acute kidney injury (CS-AKI) manifests often in the post-operative setting and is frequently related to patient co-morbidities as well as intraoperative factors that are not easily modifiable. Detecting AKI usually relies on decreases in urine output and acute increases in serum creatinine, and management in the post-operative period focuses on reducing ongoing renal insult, prudent management of perioperative hemodynamics and patient volume status. When acute renal failure occurs, renal replacement therapies (RRT) are commonly required for management of these critically ill patients, although debate persists on the optimal timing to initiate RRT when acute renal injury occurs after cardiac surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crawford TC, Magruder JT, Grimm JC, et al. Renal failure after cardiac operations: not all acute kidney injury is the same. Ann Thorac Surg. 2017;104(3):760–6.

    Article  PubMed  Google Scholar 

  2. Englberger L, Suri RM, Li Z, et al. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2011;15(1):R16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65(2):283–93.

    Article  PubMed  Google Scholar 

  4. Thomas ME, Blaine C, Dawnay A, et al. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87(1):62–73.

    Article  PubMed  Google Scholar 

  5. Chertow GM, Lazarus JM, Christiansen CL, et al. Preoperative renal risk stratification. Circulation. 1997;95(4):878–84.

    Article  CAS  PubMed  Google Scholar 

  6. Frost L, Pedersen RS, Lund O, et al. Prognosis and risk factors in acute, dialysis-requiring renal failure after open-heart surgery. Scand J Thorac Cardiovasc Surg. 1991;25(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  7. Thakar CV, Arrigain S, Worley S, et al. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.

    Article  PubMed  Google Scholar 

  8. Society of Thoracic Surgeons Blood Conservation Guideline Task, Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.

    Article  Google Scholar 

  9. Hoste EA, De Corte W. Implementing the kidney disease: improving global outcomes/acute kidney injury guidelines in ICU patients. Curr Opin Crit Care. 2013;19(6):544–53.

    PubMed  Google Scholar 

  10. Yunos NM, Bellomo R, Hegarty C, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  11. Shaw AD, Schermer CR, Lobo DN, et al. Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care. 2015;19:334.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.

    Article  CAS  PubMed  Google Scholar 

  13. Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.

    Article  CAS  PubMed  Google Scholar 

  14. Friedrich JO, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.

    Article  CAS  PubMed  Google Scholar 

  15. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526–31.

    Article  CAS  PubMed  Google Scholar 

  16. Lassnigg A, Donner E, Grubhofer G, et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):97–104.

    CAS  PubMed  Google Scholar 

  17. Myles PS, Buckland MR, Schenk NJ, et al. Effect of “renal-dose” dopamine on renal function following cardiac surgery. Anaesth Intensive Care. 1993;21(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  18. Bagshaw SM, Bellomo R, Kellum JA. Oliguria, volume overload, and loop diuretics. Crit Care Med. 2008;36(4 Suppl):S172–8.

    Article  PubMed  Google Scholar 

  19. Bagshaw SM, Delaney A, Haase M, et al. Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resusc. 2007;9(1):60–8.

    PubMed  Google Scholar 

  20. Karajala V, Mansour W, Kellum JA. Diuretics in acute kidney injury. Minerva Anestesiol. 2009;75(5):251–7.

    CAS  PubMed  Google Scholar 

  21. Macedo E, Bouchard J, Soroko SH, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14(3):R82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Teixeira C, Garzotto F, Piccinni P, et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care. 2013;17(1):R14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Metnitz PG, Krenn CG, Stelzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051–8.

    Article  PubMed  Google Scholar 

  24. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mehta RH, Grab JD, O'Brien SM, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16.

    Article  PubMed  Google Scholar 

  26. Garcia-Fernandez N, Perez-Valdivieso JR, Bes-Rastrollo M, et al. Timing of renal replacement therapy after cardiac surgery: a retrospective multicenter Spanish cohort study. Blood Purif. 2011;32(2):104–11.

    Article  PubMed  Google Scholar 

  27. Ji Q, Mei Y, Wang X, et al. Timing of continuous veno-venous hemodialysis in the treatment of acute renal failure following cardiac surgery. Heart Vessel. 2011;26(2):183–9.

    Article  Google Scholar 

  28. Manche A, Casha A, Rychter J, et al. Early dialysis in acute kidney injury after cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7(5):829–32.

    Article  PubMed  Google Scholar 

  29. Yang XM, Tu GW, Gao J, et al. A comparison of preemptive versus standard renal replacement therapy for acute kidney injury after cardiac surgery. J Surg Res. 2016;204(1):205–12.

    Article  PubMed  Google Scholar 

  30. Combes A, Brechot N, Amour J, et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock. The HEROICS study. Am J Respir Crit Care Med. 2015;192(10):1179–90.

    Article  PubMed  Google Scholar 

  31. Crescenzi G, Torracca L, Pierri MD, et al. ‘Early’ and ‘late’ timing for renal replacement therapy in acute kidney injury after cardiac surgery: a prospective, interventional, controlled, single-centre trial. Interact Cardiovasc Thorac Surg. 2015;20(5):616–21.

    Article  PubMed  Google Scholar 

  32. Iyem H, Tavli M, Akcicek F, et al. Importance of early dialysis for acute renal failure after an open-heart surgery. Hemodial Int. 2009;13(1):55–61.

    Article  PubMed  Google Scholar 

  33. Mirhosseini SM, Fakhri M, Asadollahi S, et al. Continuous renal replacement therapy versus furosemide for management of kidney impairment in heart transplant recipients with volume overload. Interact Cardiovasc Thorac Surg. 2013;16(3):314–20.

    Article  PubMed  Google Scholar 

  34. Schneider AG, Eastwood GM, Seevanayagam S, et al. A risk, injury, failure, loss, and end-stage renal failure score-based trigger for renal replacement therapy and survival after cardiac surgery. J Crit Care. 2012;27(5):488–95.

    Article  PubMed  Google Scholar 

  35. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.

    Article  PubMed  Google Scholar 

  36. Zou H, Hong Q, Xu G. Early versus late initiation of renal replacement therapy impacts mortality in patients with acute kidney injury post cardiac surgery: a meta-analysis. Crit Care. 2017;21(1):150.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang XM, Tu GW, Zheng JL, et al. A comparison of early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. BMC Nephrol. 2017;18(1):264.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, A.M., Wright, S. (2019). Cardiac Surgery Acute Kidney Injury: Controversy in Renal Support. In: Lonchyna, V. (eds) Difficult Decisions in Cardiothoracic Critical Care Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-04146-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04146-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04145-8

  • Online ISBN: 978-3-030-04146-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics