Skip to main content

The Bleeding Post-op CT Patient: Coagulation Tests Versus Thromboelastography

  • Chapter
  • First Online:
Difficult Decisions in Cardiothoracic Critical Care Surgery

Part of the book series: Difficult Decisions in Surgery: An Evidence-Based Approach ((DDSURGERY))

Abstract

Bleeding is a common complication of cardiac surgery associated with the derangements of the hemostatic system related to cardiopulmonary bypass and the effects and consequences of the disease state. The cause of post-operative bleeding is often multifactorial and minimizing bleeding requires not only the correction of deficiencies, but also balancing of the different blood components that contribute to clot formation. The standard coagulation tests (SCTs) frequently used by clinicians to assess coagulation capacity do not reflect the complexity of the coagulation system and typically do not provide timely information, resulting in empirical management of bleeding. Point-of-care viscoelastic hemostasis assays (VHA) are tests that monitor the different phases from clot formation to clot lysis in whole blood and provide the clinician with more complete information about imbalances in the coagulation system. Coupled with transfusion algorithms, the information provided by VHAs allows clinicians to better identify coagulation defects and improve therapeutic decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts HR, Monroe DM, Escobar MA. Current concepts of hemostasis: implications for therapy. Anesthesiology. 2004;100(3):722–30.

    Article  CAS  Google Scholar 

  2. Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26(1):41–8.

    Article  CAS  Google Scholar 

  3. Despotis G, Eby C, Lublin DM. A review of transfusion risks and optimal management of perioperative bleeding with cardiac surgery. Transfusion. 2008;48(1, Suppl):2S–30S.

    Article  CAS  Google Scholar 

  4. Mann KG, Brummel-Ziedins K, Undas A, Butenas S. Does the genotype predict the phenotype? Evaluations of the hemostatic proteome. J Thromb Haemost. 2004;2(10):1727–34.

    Article  CAS  Google Scholar 

  5. Besser MW, Klein AA. The coagulopathy of cardiopulmonary bypass. Crit Rev Clin Lab Sci. 2010;47(5–6):197–212.

    Article  Google Scholar 

  6. Levi M, Hunt BJ. A critical appraisal of point-of-care coagulation testing in critically ill patients. J Thromb Haemost. 2015;13:1960–7.

    Article  CAS  Google Scholar 

  7. Benes J, Zatloukal J, Kletecka J. Viscoelastic methods of blood clotting assessment – a multidisciplinary review. Front Med. 2015;2:62.

    Article  Google Scholar 

  8. Chee YL, Greaves M. Role of coagulation testing in predicting bleeding risk. Hematol J. 2003;4(6):373–8.

    Article  Google Scholar 

  9. Engoren MC, Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ. Effect of blood transfusion on long-term survival after cardiac operation. Ann Thorac Surg. 2002;74(4):1180–6.

    Article  Google Scholar 

  10. Rao SV, Jollis JG, Harrington RA, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292(13):1555–62.

    Article  CAS  Google Scholar 

  11. Spiess BD, Royston D, Levy JH, et al. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion. 2004;44(8):1143–8.

    Article  Google Scholar 

  12. Mikkola R, Gunn J, Heikkinen J, Wistbacka JO, Teittinen K, Kuttila K, et al. Use of blood products and risk of stroke after coronary artery bypass surgery. Blood Transfus. 2012;10(4):490–501.

    PubMed  PubMed Central  Google Scholar 

  13. Ghazi L, Schwann TA, Engoren MC, Habib RH. Role of blood transfusion product type and amount in deep vein thrombosis after cardiac surgery. Thromb Res. 2015;136(6):1204–10.

    Article  CAS  Google Scholar 

  14. Zbrozek A, Magee G. Cost of bleeding in trauma and complex cardiac surgery. Clin Ther. 2015;37(9):1966–74.

    Article  Google Scholar 

  15. Theusinger OM, Stein P, Levy JH. Point of care and factor concentrate-based coagulation algorithms. Transfus Med Hemother. 2015;42(2):115–21.

    Article  Google Scholar 

  16. Horacek M, Cvachovec K. The effects of cardiopulmonary bypass with hollow fiber membrane oxygenator on blood clotting measured by thromboelastography. Physiol Res. 2002;51(2):145–50.

    CAS  PubMed  Google Scholar 

  17. Lee GC, Kicza AM, Liu KY, Nyman CB, Kaufman RM, Body SC. Does rotational thromboelastometry (ROTEM) improve prediction of bleeding after cardiac surgery? Anesth Analg. 2012;115(3):499–506.

    PubMed  Google Scholar 

  18. Welsh KJ, Padilla A, Dasgupta A, Nguyen AN, Wahed A. Thromboelastography is a suboptimal test for determination of the underlying cause of bleeding associated with cardiopulmonary bypass and may not predict a hypercoagulable state. Am J Clin Pathol. 2014;142(4):492–7.

    Article  Google Scholar 

  19. Davidson SJ, McGrowder D, Roughton M, Kelleher AA. Can ROTEM thromboelastometry predict postoperative bleeding after cardiac surgery? J Cardiothorac Vasc Anesth. 2008;22(5):655–61.

    Article  Google Scholar 

  20. McQuilten ZK, Andrianopoulos N, Wood EM, et al. Transfusion practice varies widely in cardiac surgery: results from a national registry. J Thorac Cardiovasc Surg. 2014;147(5):1684–90.

    Article  Google Scholar 

  21. Shander A, Puzio T, Javidroozi M. Variability in transfusion practice and effectiveness of strategies to improve it. J Cardiothorac Vasc Anesth. 2012;26(4):541–4.

    Article  Google Scholar 

  22. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88(2):312–9.

    CAS  PubMed  Google Scholar 

  23. Royston D, von Kier S. Reduced haemostatic factor transfusion using heparinase-modified thrombelastography during cardiopulmonary bypass. Br J Anaesth. 2001;86(4):575–8.

    Article  CAS  Google Scholar 

  24. Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94(5):773–81.

    Article  CAS  Google Scholar 

  25. Avidan MS, Alcock EL, Da Fonseca J, et al. Comparison of structured use of routine laboratory tests or near-patient assessment with clinical judgement in the management of bleeding after cardiac surgery. Br J Anaesth. 2004;92(2):178–86.

    Article  CAS  Google Scholar 

  26. Anderson L, Quasim I, Soutar R, Steven M, Macfie A, Korte W. An audit of red cell and blood product use after the institution of thromboelastometry in a cardiac intensive care unit. Transfus Med. 2006;16(1):31–9.

    Article  CAS  Google Scholar 

  27. Ak K, Isbir CS, Tetik S, et al. Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study. J Card Surg. 2009;24(4):404–10.

    Article  Google Scholar 

  28. Westbrook AJ, Olsen J, Bailey M, Bates J, Scully M, Salamonsen RF. Protocol based on thromboelastograph (TEG) out-performs physician preference using laboratory coagulation tests to guide blood replacement during and after cardiac surgery: a pilot study. Heart Lung Circ. 2009;18(4):277–88.

    Article  Google Scholar 

  29. Girdauskas E, Kempfert J, Kuntze T, et al. Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2010;140(5):1117–24.

    Article  Google Scholar 

  30. Görlinger K, Dirkmann D, Hanke AA, et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91.

    PubMed  Google Scholar 

  31. Weber CF, Goerlinger K, Meininger D, et al. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117(3):531–47.

    Article  Google Scholar 

  32. Fassl J, Matt P, Eckstein F, et al. Transfusion of allogeneic blood products in proximal aortic surgery with hypothermic circulatory arrest: effect of thromboelastometry-guided transfusion management. J Cardiothorac Vasc Anesth. 2013;27(6):1181–8.

    Article  Google Scholar 

  33. Fahrendorff M, Oliveri RS, Johansson PI. The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products – a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2017;25(1):39.

    Article  Google Scholar 

  34. Yildirim F, Tuncer B, Ozbakkaloglu A, Kurdal AT, Ozturk T, Iskesen I. Thromboelastogram reduces blood use by inspecting coagulation in heart surgery. Asian Cardiovasc Thorac Ann. 2016;24(5):441–4.

    Article  CAS  Google Scholar 

  35. Spath NB, Lala HM, Robinson SC. Introduction of a simple algorithm improves thromboelastography-guided blood product use during cardiac surgery. Anaesth Intensive Care. 2017;45(1):122–3.

    Article  CAS  Google Scholar 

  36. Ranucci M, Baryshnikova E, Pistuddi V, Menicanti L, Frigiola A. Surgical and Clinical Outcome REsearch (SCORE) Group. The effectiveness of 10 years of interventions to control postoperative bleeding in adult cardiac surgery. Interact Cardiovasc Thorac Surg. 2017;24(2):196–202.

    PubMed  Google Scholar 

  37. Karkouti K, Callum J, Wijeysundera DN, et al. Point-of-care hemostatic testing in cardiac surgery: a stepped-wedge clustered randomized controlled trial. Circulation. 2016;134(16):1152–62.

    Article  Google Scholar 

  38. Wasowicz M1, SA MC, Wijeysundera DN, et al. The incremental value of thrombelastography for prediction of excessive blood loss after cardiac surgery: an observational study. Anesth Analg. 2010;111(2):331–8.

    Article  Google Scholar 

  39. Whiting P, Al M, Westwood M, et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2015;19(58):1–228.

    Article  Google Scholar 

  40. Serraino GF, Murphy GJ. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: updated systematic review and meta-analysis. Br J Anaesth. 2017;118(6):823–33.

    Article  CAS  Google Scholar 

  41. Deppe AC, Weber C, Zimmermann J, et al. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: a meta-analysis of 8332 patients. J Surg Res. 2016;203(2):424–33.

    Article  Google Scholar 

  42. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev. 2016;(8). Art. No.: CD007871.

    Google Scholar 

  43. Bolliger D, Tanaka KA. Roles of thrombelastography and thromboelastometry for patient blood management in cardiac surgery. Transfus Med Rev. 2013;27(4):213–20.

    Article  Google Scholar 

  44. Sartorius D, Waeber JL, Pavlovic G, et al. Goal-directed hemostatic therapy using the rotational thromboelastometry in patients requiring emergent cardiovascular surgery. Ann Card Anaesth. 2014;17:100–8.

    Article  Google Scholar 

  45. Rafiq S, Johansson PI, Kofoed KF, Olsen PS, Steinbrüchel DA. Preoperative hemostatic testing and the risk of postoperative bleeding in coronary artery bypass surgery patients. J Card Surg. 2016;31(9):565–71.

    Article  Google Scholar 

  46. Chitlur M, Sorensen B, Rivard GE, et al. Standardization of thromboelastography: a report from the TEG-ROTEM working group. Haemophilia. 2011;17(3):532–7.

    Article  CAS  Google Scholar 

  47. Despotis G, Avidan M, Eby C. Prediction and management of bleeding in cardiac surgery. J Thromb Haemost. 2009;7(Suppl 1):111–7.

    Article  CAS  Google Scholar 

  48. O'Neal JB, Shaw AD. Goal-directed therapy: what we know and what we need to know. Perioper Med (Lond). 2015;4(1):1.

    Article  Google Scholar 

  49. Radulovic V, Laffin A, Hansson KM, Backlund E, Baghaei F, Jeppsson A. Heparin and protamine titration does not improve haemostasis after cardiac surgery: a prospective randomized study. PLoS One. 2015;10(7):e0130271.

    Article  Google Scholar 

  50. Meesters MI, Kuiper G, Vonk AB, Loer SA, Boer C. Validation of a point-of-care prothrombin time test after cardiopulmonary bypass in cardiac surgery. Anaesthesia. 2016;71(10):1163–8.

    Article  CAS  Google Scholar 

  51. Gauss T, Hamada S, Jurcisin I, et al. Limits of agreement between measures obtained from standard laboratory and the point-of care device Hemochron Signature Elite(R) during acute haemorrhage. Br J Anaesth. 2014;112(3):514–20.

    Article  CAS  Google Scholar 

  52. Venema LF, Post WJ, Hendriks HG, et al. An assessment of clinical interchangeability of TEG and RoTEM thromboelastographic variables in cardiac surgical patients. Anesth Analg. 2010;111(2):339–44.

    Article  Google Scholar 

  53. Coakley M, Reddy K, Mackie I, et al. Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth. 2006;20(4):548–53.

    Article  Google Scholar 

  54. Nielsen VG. A comparison of the Thrombelastograph and the ROTEM. Blood Coagul Fibrinolysis. 2007;18(3):247–52.

    Article  Google Scholar 

  55. Jackson GN, Ashpole KJ. Yentis SM: the TEG vs the ROTEM thromboelastography/thromboelastometry systems. Anaesthesia. 2009;64(2):212–5.

    Article  CAS  Google Scholar 

  56. Schöchl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55.

    Article  Google Scholar 

  57. Hett DA, Walker D, Pilkington SN, Smith DC. Sonoclot analysis. Br J Anaesth. 1995;75(6):771–6.

    Article  CAS  Google Scholar 

  58. Ferrante EA, Blasier KR, Givens TB, Lloyd CA, Fischer TJ, Viola F. A novel device for the evaluation of hemostatic function in critical care settings. Anesth Analg. 2016;123(6):1372–9.

    Article  Google Scholar 

  59. Harvey L, Holley CT, John R. Gastrointestinal bleed after left ventricular assist device implantation: incidence, management, and prevention. Ann Cardiothorac Surg. 2014;3(5):475–9.

    PubMed  PubMed Central  Google Scholar 

  60. Davis ME, Haglund NA, Tricarico NM, Keebler ME, Maltais S. Development of acquired von Willebrand syndrome during short-term micro axial pump support: implications for bleeding in a patient bridged to a long-term continuous-flow left ventricular assist device. ASAIO J. 2014;60:355–7.

    Article  CAS  Google Scholar 

  61. Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7.

    Article  CAS  Google Scholar 

  62. Feldmann C, Zayat R, Groetzenich A, et al. Perioperative onset of acquired von Willebrand syndrome: comparison between HVAD, HeartMateII and on-pump coronary bypass surgery. PLoS One. 2017;12(2):e0171029.

    Article  Google Scholar 

  63. Reich HJ, Morgan J, Arabia F, Czer L, Moriguchi J, Ramzy D, Esmailian F, Lam L, Dunhill J, Volod O. Comparative analysis of von Willebrand factor profiles after implantation of left ventricular assist device and total artificial heart. J Thromb Haemost. 2017;15(8):1620–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Volod .

Editor information

Editors and Affiliations

Appendix

Appendix

This case demonstrates an accurate assessment of postoperative coagulopathy with VHA (TEG) compared to the SCT.

Coagulation status of a 39-year-old female implanted with total artificial heart (TAH) implantation with anticoagulation being maintained with Coumadin and Aspirin. Routine laboratory study results were as follows: white blood cell (WBC) count, 25 × 109/L (elevated); platelet (PLT) count, 429 × 109/L; prothrombin time (PT), 22.5 s (normal, 11.9–14.4 s); partial thromboplastin time (PTT), 48 s (normal, 22–37 s) and fibrinogen 536 mg/dl (normal 200–400 mg/dl). Concurrent TEG showed normal clotting time (R), but clot lysis indices (LY30 = 30.2% and CI >1) suggesting secondary fibrinolysis, commonly seen in the first phase of sepsis or in disseminated intravascular coagulation (DIC). The excessive rate of clot breakdown clinically presents as bleeding which occurred in this patient few hours later. Her elevated WBC count was initially contributed to corticosteroid therapy. Later it was found that it was due to infection. TEG evaluation allowed a more accurate assessment of all phases of coagulation, which revealed incipient DIC. As a result, more appropriate therapy was instituted with a successful outcome (Fig. 30.2).

Fig. 30.2
figure 2

TEG results of patient implanted with TAH post-operative day 12

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volod, O., Wegner, J. (2019). The Bleeding Post-op CT Patient: Coagulation Tests Versus Thromboelastography. In: Lonchyna, V. (eds) Difficult Decisions in Cardiothoracic Critical Care Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-04146-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04146-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04145-8

  • Online ISBN: 978-3-030-04146-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics