Skip to main content

Improving the Physical Layer Security of IoT-5G Systems

  • Chapter
  • First Online:

Abstract

Ensuring the security of the Internet of Things (IoT) is deemed as one of the most critical challenges and needs that have to be addressed in order to guarantee the successful deployment of IoT in emerging technologies like 5G. In an effort to address this challenge, in this work, an improved and flexible physical layer security technique, referred to as orthogonal frequency-division multiplexing with subcarrier index selection and artificially interfering signals (OFDM-SIS-AIS), is developed for protecting the transmission of OFDM-based waveforms against eavesdropping in 5G and beyond wireless networks. In this technique, the frequency response of correlated subchannels is first converted into a completely randomized and independent response by means of adaptive interleaving. Then, the whole OFDM block is divided into small subblocks, each containing a set of subcarriers, from which a subset of these subcarriers, which are corresponding to high subchannel gains, are selected and used for data transmission, while the remaining ones, which are corresponding to low subchannel gains, are used for sending artificially interfering signals. The selected subcarriers are determined through an optimization problem that can effectively maximize the signal-to-noise ratio (SNR) at only the legitimate receiver. The obtained results demonstrate a significant improvement in the secrecy gap performance without considering the knowledge of the eavesdropper’s channel nor sharing any keys while maintaining low complexity and high reliability at the legitimate user. These numerous advantages have the potential to make the proposed scheme a consistent candidate technique for secure IoT-5G based services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Remark: If Eve is assumed to be not aware of the used security technique, Eve may think and assume that this is a normal received OFDM signal since the structure of the interference subcarriers is the same as that of the data, i.e., there is no distinctive features between the subcarriers carrying data from that carrying interference at the receiving side with respect to Eve. Hence, Eve will try to decode the whole OFDM symbol as in usual cases without considering the fact that there are subcarriers that are filled with interference. In this case, the analysis will give worse results compared to the abovementioned cases.

References

  1. Al-Turjman, F., Ever, E., & Zahmatkesh, H. (2018). Small cells in the forthcoming 5G/IoT: Traffic modelling and deployment overview. IEEE Communications Surveys Tutorials, 1–1. https://ieeexplore.ieee.org/document/8430735

  2. Al-Turjman, F., & Alturjman, S. (2018). Context-sensitive access in industrial internet of things (IIoT) healthcare applications. IEEE Transactions on Industrial Informatics, 14(6), 2736–2744.

    Article  Google Scholar 

  3. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical security. IEEE Communications Magazine, 53(4), 20–27.

    Article  Google Scholar 

  4. Mukherjee, A. (2015). Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints. Proceedings of the IEEE, 103(10), 1747–1761.

    Article  Google Scholar 

  5. Al-Turjman, F. (2019). 5G-enabled devices and smart-spaces in social-IoT: An overview. Future Generation Computer Systems, 92, 732–744. https://www.sciencedirect.com/science/article/pii/S0167739X17311962

    Article  Google Scholar 

  6. Deebak, B. D., Ever, E., & Al-Turjman, F. (2018). Analyzing enhanced real-time uplink scheduling algorithm in 3GPP LTE-advanced networks using multimedia systems. Transactions on Emerging Telecommunications Technologies, 29(10), e3443, ETT-18-0041.R2.https://onlinelibrary.wiley.com/doi/full/10.1002/ett.3443

    Article  Google Scholar 

  7. Alabady, S. A., Al-Turjman, F., & Din, S. (2018). A novel security model for cooperative virtual networks in the IoT era. International Journal of Parallel Programming. https://link.springer.com/article/10.1007/s10766-018-0580-z

  8. Al-Turjman, F., & Alturjman, S. (2018). Confidential smart-sensing framework in the IoT era. The Journal of Supercomputing, 74, 5187–5198.

    Article  Google Scholar 

  9. Mukherjee, A., Fakoorian, S., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.

    Article  Google Scholar 

  10. Guvenkaya, E., Hamamreh, J. M., & Arslan, H. (2017). On physical-layer concepts and metrics in secure signal transmission. Physical Communication, 25, 14–25.

    Article  Google Scholar 

  11. Hamamreh, J. M., & Arslan, H. (2018). Joint PHY/MAC layer security design using ARQ with MRC and null-space independent PAPR-aware artificial noise in SISO systems. IEEE Transactions on Wireless Communications, 17(9), 6190–6204.

    Article  Google Scholar 

  12. Hamamreh, J. M., Guvenkaya, E., Baykas, T., & Arslan, H. (2016). A practical physical-layer security method for precoded OSTBC-based systems. In Proceedings of 2016 IEEE wireless communications and networking conference (WCNC), Apr 2016 (pp. 1–6).

    Google Scholar 

  13. Li, M., Kundu, S., Pados, D. A., & Batalama, S. N. (2013). Waveform design for secure SISO transmissions and multicasting. IEEE Journal on Selected Areas in Communications, 31(9), 1864–1874.

    Article  Google Scholar 

  14. Hamamreh, J. M., & Arslan, H. (2017). Secure orthogonal transform division multiplexing (OTDM) waveform for 5G and beyond. IEEE Communications Letters, 21(5), 1191–1194. https://ieeexplore.ieee.org/document/7814269

    Article  Google Scholar 

  15. Hamamreh, J. M., & Arslan, H. (2017). Time-frequency characteristics and PAPR reduction of OTDM waveform for 5G and beyond. In 2017 10th international conference on electrical and electronics engineering (ELECO), Nov 2017 (pp. 681–685).

    Google Scholar 

  16. El Hajj Shehadeh, Y., Alfandi, O., & Hogrefe, D. (2012). Towards robust key extraction from multipath wireless channels. Journal of Communications and Networks, 14(4), 385–395.

    Article  Google Scholar 

  17. Li, H., Wang, X., & Chouinard, J.-Y. (2015). Eavesdropping-resilient OFDM system using sorted subcarrier interleaving. IEEE Transactions on Wireless Communications, 14(2), 1155–1165.

    Article  Google Scholar 

  18. Al-Turjman, F. (2018). QoS-aware data delivery framework for safety-inspired multimedia in integrated vehicular-IoT. Computer Communications, 121, 33–43.

    Article  Google Scholar 

  19. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation for secure OFDMA systems. IEEE Transactions on Vehicular Technology, 61(6), 2572–2585.

    Article  Google Scholar 

  20. Hamamreh, J. M., Yusuf, M., Baykas, T., & Arslan, H. (2016). Cross MAC/PHY layer security design using ARQ with MRC and adaptive modulation. In Proceedings of 2016 IEEE Wireless Communications and Networking Conference (WCNC), Apr 2016 (pp. 1–7).

    Google Scholar 

  21. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2017). Secure pre-coding and post-coding for OFDM systems along with hardware implementation. In Proceedings of 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), June 2017 (pp. 1338–1343).

    Google Scholar 

  22. Guvenkaya, E., & Arslan, H. (2014). Secure communication in frequency selective channels with fade-avoiding subchannel usage. In Proceedings of 2014 IEEE international conference on communications work. ICC’14, June 2014 (pp. 813–818).

    Google Scholar 

  23. Furqan, H. M., Hamamreh, J. M., & Arslan, H. (2017). Enhancing physical layer security of OFDM-based systems using channel shortening. In Proceedings of 2017 IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Oct 2017 (pp. 8–13).

    Google Scholar 

  24. Qin, H., Sun, Y., Chang, T.-H., Chen, X., Chi, C.-Y., Zhao, M., & Wang, J. (2013). Power allocation and time-domain artificial noise design for wiretap OFDM with discrete inputs. IEEE Transactions on Wireless Communications, 12(6), 2717–2729.

    Article  Google Scholar 

  25. Yusuf, M., & Arslan, H. (2016). Controlled inter-carrier interference for physical layer security in OFDM systems. In Proceedings of IEEE vehicular technology conference (VTC-Fall), Sept 2016 (pp. 1–5).

    Google Scholar 

  26. Ankaral, Z. E., Karabacak, M., & Arslan, H. (2014). Cyclic feature concealing CP selection for physical layer security. In 2014 IEEE military communications conference, Oct 2014 (pp. 485–489).

    Google Scholar 

  27. Hamamreh, J. M., Basar, E., & Arslan, H. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE Access, 5, 25863–25875. https://ieeexplore.ieee.org/document/8093591

    Article  Google Scholar 

  28. Lei, S.-W., & Lau, V. K. N. (2002). Performance analysis of adaptive interleaving for OFDM systems. IEEE Transactions on Vehicular Technology, 51(3), 435–444.

    Article  Google Scholar 

  29. Basar, E., Wen, M., Mesleh, R., Renzo, M. D., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access, 5(1), 16693–16746.

    Article  Google Scholar 

  30. Huemer, M., Hofbauer, C., & Huber, J. B. (2010). The potential of unique words in OFDM. In Proceedings of 15th international OFDM-workshop 2010 (InOWo’10), Sept 2010 (pp. 140–144).

    Google Scholar 

  31. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products P.891 (8.258) (7th ed.). Cambridge, MA: Academic Press. https://www.sciencedirect.com/book/9780123849335/table-of-integrals-series-and-products

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehad M. Hamamreh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamamreh, J.M. (2019). Improving the Physical Layer Security of IoT-5G Systems. In: Al-Turjman, F. (eds) Artificial Intelligence in IoT. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-04110-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04110-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04109-0

  • Online ISBN: 978-3-030-04110-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics