Skip to main content

The Derivative of the Matrix Geometric Mean with an Application to the Nonnegative Decomposition of Tensor Grids

  • Chapter
  • First Online:
Book cover Structured Matrices in Numerical Linear Algebra

Part of the book series: Springer INdAM Series ((SINDAMS,volume 30))

Abstract

We provide an expression for the derivative of the weighted matrix geometric mean, with respect to both the matrix arguments and the weights, that can be easily translated to an algorithm for its computation. As an application, we consider the problem of the approximate decomposition of a tensor grid M, a matrix whose entries are positive definite matrices. For different geometries on the set of positive definite matrices, we derive an approximate decomposition such that any column of M is a barycentric combination of the columns of a smaller tensor grid. This extends the Euclidean case, already considered in the literature, to the geometry in which the barycenter is the matrix geometric mean and the log-Euclidean geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)

    Article  Google Scholar 

  2. Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  3. Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413(2–3), 594–618 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bini, D.A., Iannazzo, B.: A note on computing matrix geometric means. Adv. Comput. Math. 35(2–4), 175–192 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bini, D.A., Iannazzo, B., Jeuris, B., Vandebril, R.: Geometric means of structured matrices. BIT 54(1), 55–83 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cheng, G., Vemuri, B.C.: A novel dynamic system in the space of SPD matrices with applications to appearance tracking. SIAM J. Imaging Sci. 6(1), 592–615 (2013)

    Article  MathSciNet  Google Scholar 

  8. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4(3), 155–174 (2017)

    Article  Google Scholar 

  9. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  10. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Iannazzo, B.: The geometric mean of two matrices from a computational viewpoint. Numer. Linear Algebra Appl. 23(2), 208–229 (2016)

    Article  MathSciNet  Google Scholar 

  13. Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Lang, S.: Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    Book  Google Scholar 

  16. Lawson, J., Lim, Y.: Weighted means and Karcher equations of positive operators. Proc. Natl. Acad. Sci. U. S. A. 110(39), 15626–15632 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen, T., Dietterich, T., Tresp, V. (eds) Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2001)

    Google Scholar 

  18. Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elasticity 82(3), 273–296 (2006)

    Article  MathSciNet  Google Scholar 

  19. Moakher, M., Zéraï, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vision 40(2), 171–187 (2011)

    Article  MathSciNet  Google Scholar 

  20. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)

    Article  MathSciNet  Google Scholar 

  21. Rentmeesters, Q., Absil, P.A.: Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors. In: 2011 19th European Signal Processing Conference, pp. 2229–2233. IEEE (2011)

    Google Scholar 

  22. Sra, S., Dhillon, I.S.: Nonnegative Matrix Approximation: Algorithms and Applications. Technical Report TR-06-27, The University of Texas at Austin, June (2006)

    Google Scholar 

  23. Wang, Y., Salehian, H., Cheng, G., Vemuri, B.C.: Tracking on the product manifold of shape and orientation for tractography from diffusion MRI. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3051–3056. IEEE (2014)

    Google Scholar 

  24. Xie, Y., Ho, J., Vemuri, B.: Nonnegative factorization of diffusion tensor images and its applications. In: International Conference on Information Processing in Medical Imaging (IPMI) (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for carefully reading the manuscript, providing many insightful comments which improved the presentation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Iannazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iannazzo, B., Jeuris, B., Pompili, F. (2019). The Derivative of the Matrix Geometric Mean with an Application to the Nonnegative Decomposition of Tensor Grids. In: Bini, D., Di Benedetto, F., Tyrtyshnikov, E., Van Barel, M. (eds) Structured Matrices in Numerical Linear Algebra. Springer INdAM Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-04088-8_6

Download citation

Publish with us

Policies and ethics