Skip to main content

Solar Composition

  • Chapter
  • First Online:
  • 427 Accesses

Abstract

Until the late 1920s it was accepted that Sun and Earth had very similar compositions. The revelation that the Sun is composed primarily of hydrogen prompted novel models for its evolution and hence for solar irradiance and magnetism, and it was an essential step towards the current nuclear scheme with its dependence on hydrogen-helium transformation. Nowadays solar composition is investigated by a number of strategies which bear on different parts of the Sun, notably spectroscopy primarily of the photosphere and direct chemical assay of the corona by way of the solar wind, complemented by geochemical analysis of pristine carbonaceous chondritic meteorites, which are thought to have originated in the same nebula as the Sun. The results are evaluated in the light of models of the solar interior and the findings of helioseismology, and they bear on attempts to trace the origins of the solar system, the genesis of stars, and ultimately the origin of the elements in our galaxy and indeed in the universe as a whole.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   12.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asplund M, Grevesse N, Sauval AJ (2005) The solar chemical composition. In Barnes TG III & Bash FN (eds) Cosmic abundances as records of stellar evolution and nucleosynthesis, ASP Conf 336:25–38

    Google Scholar 

  2. Asplund M et al (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47, 481–522

    Article  ADS  Google Scholar 

  3. Balogh A, Marsdenet RG, Smith EJ (2001) The heliosphere near solar minimum: the Ulysses perspective. Springer, Berlin

    Google Scholar 

  4. Campbell IH, O’Neill HSC (2012) Evidence against a chondritic Earth. Nature 483:554–558

    Article  ADS  Google Scholar 

  5. DeVorkin DH (2010) Extraordinary claims require extraordinary evidence: CH Payne, HN Russell and standards of evidence in early quantitative stellar spectroscopy. J Astron Hist Heritage 13:139–144

    Google Scholar 

  6. Diehl R et al (2016) Radioactive 26Al from massive stars in the Galaxy. Nature 439:45–47

    Google Scholar 

  7. Eddington AS (1926) The internal constitution of the stars. Cambridge Univ Press, Cambridge

    Google Scholar 

  8. François P et al (2004) The evolution of the Milky Way from its earliest phases: constraints on stellar nucleosynthesis. Astron Astrophys 421: 613–621

    Article  ADS  Google Scholar 

  9. Galvin AB and 26 others (1996) Solar wind composition: first results from SOHO and future expectations. Bull Am Astr Soc 28: 897

    Google Scholar 

  10. Geiss J, Gloeckler G (2007) Linking primordial to solar and galactic composition. Space Sci Rev 130: 5–26

    Article  ADS  Google Scholar 

  11. Gorshkov A B & Baturin V A 2008 Diffusion settling of heavy elements in the solar interior. Astron Rep 52:760–771

    Article  ADS  Google Scholar 

  12. Gounelle M. and Zolensky M. E. 2014. The Orgueil meteorite: 150 years of history. Meteoritics and Planetary Science 49:1769–1794

    Article  ADS  Google Scholar 

  13. Grevesse N, Noels A (1993) Origin and evolution of the elements. Cambridge Univ Press, Cambridge

    Google Scholar 

  14. Grevesse N & Sauval AJ (2002) The composition of the solar photosphere. Adv Space Res 30:3–11

    Article  ADS  Google Scholar 

  15. King AJ et al (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim Cosmochim Acta 165, 148–160

    Article  ADS  Google Scholar 

  16. Koch GS, Link RF (1970) Statistical analysis of geological data. Wiley, New York

    Google Scholar 

  17. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591: 1220–124

    Article  ADS  Google Scholar 

  18. Myers JC (1997) Geostatistical error management. Van Nostrand Reinhold, New York

    Google Scholar 

  19. Neckel H (1994) Solar absolute reference spectrum. Int Asr Un Colloq 143:37–44

    Article  ADS  Google Scholar 

  20. Payne CH (1925) Stellar atmospheres. Harvard Univ Press, Cambridge Mass

    Google Scholar 

  21. Pevtsov AA, Bertello L, Marble AR (2004) The sun-as-a-star solar spectrum. Astron Nachr 335: 21–26

    Article  ADS  Google Scholar 

  22. Phillips KJH (1992) Guide to the Sun. Cambridge Univ Press, Cambridge

    Google Scholar 

  23. Reames DV (2013) The two sources of solar energetic particles. Space Sci Rev 175:53

    Article  ADS  Google Scholar 

  24. Reames DV (2014) Element abundances in solar energetic particles and the solar corona. Solar Phys 289:977–993

    Article  ADS  Google Scholar 

  25. Rosenberg DE (2016) Automation of spectroscopic observations on the Dark Sky Observatory 32-inch telescope. MSc thesis, Appalachian State University

    Google Scholar 

  26. Russell HN (1929) On the composition of the sun’s atmosphere. Astrophys J 70: 11–82

    Article  ADS  Google Scholar 

  27. Saha MN (1920) Ionization in the solar chromosphere. Phil Mag 40:472–488

    Google Scholar 

  28. Schmelz JT et al (2012) Composition of the solar corona, solar wind, and solar energetic particles. Astron J 755:33

    Article  ADS  Google Scholar 

  29. St. John CE, Babcock HD (1924) Pressure and circulation in the reversing-layer of the sun’s atmosphere. Astrophys J 60:32–42

    Google Scholar 

  30. Serenelli A (2016) Alive and well: a short review about standard solar models. ArXiv:1601.07179 v1[astro-ph.SR]

    Google Scholar 

  31. Sobel D (2016) The glass universe. Fourth Estate, London

    Google Scholar 

  32. Turcotte S, Christensen-Dalsgaard J (1998) The effect of differential settling and the revised abundances on solar oscillation frequencies. ESA SP-418, Boston, 561–565

    Google Scholar 

  33. Vauclair S (2003) Diffusion and mixing inl main-sequence stars. Astrophys Space Sci 284:205–215

    Google Scholar 

  34. Vita-Finzi C (2016) The contribution of the Joule-Thomson effect to solar coronal heating. ArXiv:1612.07943

    Google Scholar 

  35. Von Steiger R et al (2001) Measuring solar abundances. In Wimmer-Schweingruber RF (ed) Solar and galactic composition. AIP Conf Proc 598, Melville, NY, USA, 13–22

    Google Scholar 

  36. Wayman PA (2002) Cecilia Payne-Gaposhkin: astronomer extraordinaire. Astron Geophys 43:1.27–1.29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vita-Finzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vita-Finzi, C. (2018). Solar Composition. In: The Sun Today. Springer, Cham. https://doi.org/10.1007/978-3-030-04079-6_3

Download citation

Publish with us

Policies and ethics