Skip to main content

An Inconstant Star

  • Chapter
  • First Online:
Book cover The Sun Today
  • 416 Accesses

Abstract

Stars have long been classified on the basis of their brightness; variability was a secondary consideration but eventually proved an important clue to stellar dynamics as well as a means of classification. The Sun’s ~11-year activity cycle, identified mainly from sunspots and other surface features, is superimposed on both longer and shorter periodicities which are manifested in luminosity and internal processes to different degrees. Solar observation thus makes increasing demands on the versatility and sensitivity of observatories, observers and their archives, and rules out an all-purpose definition of the present-day Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 12.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott CG, Fowle FE Jr (1908) Recent determination of the solar constant of radiation. Jour Geophys Res 13:79–82

    Article  ADS  Google Scholar 

  2. Ackermann M et al (2014) High-energy gamma-ray emission from solar flares: summary of FERMI Large Area Telescope detections and analysis of two M-class flares. Astrophys J 787:15

    Google Scholar 

  3. Albrect R, Maitzen HM, Rakos KD (1969) The Sun as a Variable Star. Astron Astrophys 3: 236–242

    Google Scholar 

  4. AAVSO (American As Variable Star Observers) (2017) www.aavso.or

  5. Bastian T (2004) Low-frequency solar radiophysics with LOFAR and FASR. Planet Space Sci 52:1381–1389

    Article  ADS  Google Scholar 

  6. Bradaschia F (2013) Radioastronomy. Sandit

    Google Scholar 

  7. Cessateur G et al (2016) Total Solar Irradiance changes between 2010 and 2014 from the PREcision MOnitor Sensor absolute radiometer (PREMOS/PICARD). AGU Fall Ass 2016, Abs SH42B

    Google Scholar 

  8. Domingo V (1994) In Pap JM et al (eds) The Sun as a variable star, IAU Colloq 143, Cambridge Univ P, Cambridge

    Google Scholar 

  9. Dudok de Wit T et al (2017) Methodology to create a new total solar irradiance record. Geophys Res Lett 44: 1196–1203 https://doi.org/10.1002/2016gl071866

    Article  ADS  Google Scholar 

  10. Dufresne J-L (2008) La détermination de la constante solaire par Claude Pouillet. Météo 60:36–43

    Google Scholar 

  11. Frieman EA et al (ed) (1994) Solar influences on global change. Nat Acad Press, Washington DC

    Google Scholar 

  12. Fröhlich C (2016) Irradiance observations of the Sun. Intern Astron Un Colloq 143: 28–36

    Article  Google Scholar 

  13. Fröhlich C & Anklin M (2000) Uncertainty of total solar irradiance: an assessment of the last twenty years of space radiometry. Metrologia 37:387–392

    Article  ADS  Google Scholar 

  14. Fröhlich C & Lean J (1998) Total solar irradiance variations: The construction of a composite and its comparison with models. Proc Int Astr Un 185:89–102

    Google Scholar 

  15. Hilbig T et al (2016)The new SCIAMACHY reference solar spectral irradiance and its validation. Geophys Res Abs 18

    Google Scholar 

  16. Kalisz J (2004) Review of methods for time interval measurements with picosecond resolution. Metrologia 41:17–32

    Article  ADS  Google Scholar 

  17. Kepler SO et al (2000) Evolutionary timescale of the pulsating white dwarf G117-B15A: the most stable optical clock known. Astrophys Jour 534: L185–L188

    Article  ADS  Google Scholar 

  18. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: Evidence and climate significance. Geophys Res Lett 38: L01706, https://doi.org/10.1029/2010gl04577

  19. Krivova NA, Solanki SK, Wenzler T (2009) ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? arXiv:0911.3817v1[astro-ph.SR]

  20. Krivova NA, Solanki SK (2013) Models of solar total and spectral irradiance variability of relevance for climate studies, in Lübken F-J (ed) (2013) Climate and weather of the Sun-Earth system (CAWSES). Springer, 19–38

    Google Scholar 

  21. Kurucz RL (1991) The solar spectrum. In: Cox AN, Livingston WC, Matthews MS (eds) Solar interior and atmosphere. Univ Arizona Press, Tucson AZ, 663–669

    Google Scholar 

  22. Kuzhevskii BM (1982) Gamma astronomy of the Sun and study of solar cosmic rays. Soviet Phys Uspekhi 25:392–408

    Article  ADS  Google Scholar 

  23. Langley SP (1884) Researches on solar heat and its absorption by the Earth’s atmosphere. Rep Mount Whitney Exped, Prof Pap Signal Serv15. Washington

    Google Scholar 

  24. Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428

    Article  ADS  Google Scholar 

  25. Lemen JR et al (2012) The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275:17–40

    Google Scholar 

  26. Lockwood GW, Skiff BA, Baliunas SL, Radick RR (1992) Long-term solar brightness changes estimated from a survey of Sun-like stars. Nature 360:653–655

    Article  ADS  Google Scholar 

  27. Mäkelä P et al (2015) Estimating the height of CMEs associated with a major SEP event at the onset of the metric type II radio burst during solar cycles 23 and 24. Astrophys J 806:13

    Article  ADS  Google Scholar 

  28. Meftah M et al (2017) SOLAR-ISS: a new reference spectrum based on SOLAR/SOLSPEC observations. Astron Astrophys doi.org/https://doi.org/10.1051/0004-6361/201731316

    Article  Google Scholar 

  29. NASA (2017) www.mynasadata.larc.nasa.gov/

  30. Needham J (1959) Science and civilisation in China, 3: Cambridge Univ Press, Cambridge

    Google Scholar 

  31. Østgaard N et al (2003) Neutral hydrogen density profiles derived from geocoronal imaging. J Geophys Res 108:A7s

    Google Scholar 

  32. Rottman GJ, Woods TN, McClintock W (2006) SORCE solar UV irradiance results. Adv Space Res 37:201–208

    Article  ADS  Google Scholar 

  33. Southworth GC (1945) Microwave radiation from the Sun. J Frank Inst 239:285

    Article  Google Scholar 

  34. Willson RC (1984) Measurements of solar total irradiance and its variability. Space Sci Rev 38: 203–242

    Google Scholar 

  35. Yeo KL, Krivova NA, Solanki SN (2017) EMPIRE: A robust empirical reconstruction of solar irradiance variability. arXiv: 1704.07652v1 [astro.ph.SR]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vita-Finzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vita-Finzi, C. (2018). An Inconstant Star. In: The Sun Today. Springer, Cham. https://doi.org/10.1007/978-3-030-04079-6_2

Download citation

Publish with us

Policies and ethics