Skip to main content

Thermodynamic Speed of Sound for Multiphase Multi-Reactive Equilibrium Systems

  • Chapter
  • First Online:
Book cover Offshore Processing of CO2-Rich Natural Gas with Supersonic Separator

Abstract

Rigorous formulas for the thermodynamic sound speed are developed via a steady-state, unidimensional, isentropic, multiphase, and multi-reactive equilibrium plug-flow. A correspondence between a multiphase multi-reactive plug-flow element and an equilibrium closed system (ECS), with two equilibrium state coordinates, is the main theoretical resource being used. Within ECS framework, momentum and energy flow balances lead to the sound speed derivation for complex equilibrium streams. The sound speed is also investigated in the critical neighborhood using the Landau Model to prove the absence of ± singularities at the critical point, despite critical lambda-shaped ± singularities of \(\overline{C}_{P}\) and density derivatives. A method is also detailed for calculating the sound speed of multiphase and multi-reactive streams using ECS thermodynamic properties provided by multiphase Flash(P, T) of HYSYS 8.8 simulator. Unit operation extensions (UOE) are proposed for estimating the multiphase and multi-reactive sound speed via HYSYS. With HYSYS, multiphase and/or multi-reactive equilibria, including liquid water segregation, are solved to feed the ECS sound speed formula. Multiphase examples are solved: natural gas, oil–water–gas, and supersonic separator for adjustment of water and hydrocarbon dew-points of natural gas. Multi-reactive multiphase sound speeds are predicted in supersonic reactors for methane pyrolysis and for two-phase methanol oxidation to formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arinelli, L.O., Trotta, T.A.F., Teixeira, A.M., de Medeiros, J.L., Araújo, O.Q.F.: Offshore processing of CO2 rich natural gas with supersonic separator versus conventional routes. J. Nat. Gas Sci. Eng. 46, 199–221 (2017). https://doi.org/10.1016/j.jngse.2017.07.010

    Article  Google Scholar 

  • Bedard, R.L., Naunheimer, C., Gavin P. Towler, G.P.: Methane conversion apparatus and process using a supersonic flow reactor. US Patent 2014/0058160A1, 2014

    Google Scholar 

  • Cao, X., Yang, W.: The dehydration performance evaluation of a new supersonic swirling separator. J. Nat. Gas Sci. Eng. 1–10 (2015). https://doi.org/10.1016/j.jngse.2015.10.029

    Article  Google Scholar 

  • Castier, M.: Thermodynamic speed of sound in multiphase systems. Fluid Phase Equilib. 306, 204–211 (2011). https://doi.org/10.1016/j.fluid.2011.04.002

    Article  Google Scholar 

  • Cheng, A.T.Y.: Process for accelerating fast reactions using high-intensity plug-flow tubular reactors. Patent EP0995489 A2, 2000

    Google Scholar 

  • Crowl, D.A., Louvar, J.F.: Chemical Process Safety: Fundamentals with Applications, 2nd edn. Prentice Hall, USA (2002)

    Google Scholar 

  • de Medeiros, J.L., Arinelli, L.O., Araújo, O.Q.F.: Speed of sound of multiphase and multi-reactive equilibrium streams: a numerical approach for natural gas applications. J. Nat. Gas Sci. Eng. 46, 222–241 (2017). https://doi.org/10.1016/j.jngse.2017.08.006

    Article  Google Scholar 

  • Ehinmowoa, A.B., Orodub, O.D., Anaweb, P.A.L., Ogunleyec, O.O.: Attenuating severe slug flow at large valve opening for increased oil production without feedback control signal. J. Petrol. Sci. Eng. 146, 1130–1141 (2016)

    Article  Google Scholar 

  • Fox, R.W., McDonald, A.T., Pritchard, P.J.: Introduction to Fluid Mechanics, 6th edn. Wiley, New York, USA (2004)

    MATH  Google Scholar 

  • Hammer, M., Wahl, P.E., Anantharaman, R., Berstad, D., Lervåg, K.Y.: CO2 capture from off-shore gas turbines using supersonic gas separation. Energy Procedia 63, 243–252 (2014). https://doi.org/10.1016/j.egypro.2014.11.026

    Article  Google Scholar 

  • Landau, L.D.: On the Theory of Phase Transitions. Translated from Landau L.D. “Collected Papers”, vol. 1, pp. 234–252. Nauka, Moscow (1969)

    Google Scholar 

  • Leung, J.C., Grolmes, M.A.: The discharge of two-phase flashing flow in a horizontal duct. AIChE J. 33(3), 524–527 (1987). https://doi.org/10.1002/aic.690330323

    Article  Google Scholar 

  • Libby, P.A.: Theoretical analysis of turbulent mixing of reactive gases with application to supersonic combustion of hydrogen. ARS J. 32(3), 388–396 (1962). https://doi.org/10.2514/8.6033

    Article  MATH  Google Scholar 

  • Machado, P.B., Monteiro, J.G.M., Medeiros, J.L., Epsom, H.D., Araujo, O.Q.F.: Supersonic separation in onshore natural gas dew point plant. J. Nat. Gas Sci. Eng. 6, 43–49 (2012). https://doi.org/10.1016/j.jngse.2012.03.001

    Article  Google Scholar 

  • Mcmurtrey, L.J.: Nuclear powered water jet engine. US Patent US 3151596 A, 1964

    Google Scholar 

  • Nichita, D.V., Broseta, D., Leibovici, C.F.: Reservoir fluid applications of a pseudo-component delumping new analytical procedure. J. Pet. Sci. Eng. 59, 59–72 (2007)

    Article  Google Scholar 

  • Nichita, D.V., Khalid, P., Broseta, D.: Calculation of isentropic compressibility and sound velocity in two-phase fluids. Fluid Phase Equilib. 291(1), 95–102 (2010)

    Article  Google Scholar 

  • OGJ: Petrobras signs LOI to charter FPSO for Libra field. Oil Gas J. (2014)

    Google Scholar 

  • Powers, J.M., Paolucci, S.: Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43(5), 1088–1099 (2005). https://doi.org/10.2514/1.11641

    Article  Google Scholar 

  • Raniere, F.D., Schuman, M.D.: Method of controlling pyrolysis temperature. US Patent 4,724,272, 1988

    Google Scholar 

  • Romm, L., Somorjai, G.A.: High-temperature short-contact-time supersonic nozzle chemistry of light aliphatic hydrocarbons. Top. Catal. 20(1–4), 53–63 (2002)

    Article  Google Scholar 

  • Schinkelshoek, P., Epsom, H.D.: Supersonic gas conditioning—commercialisation of twister technology. GPA Annual Convention Proceedings, pp. 739–745. Grapevine, Texas, USA (2008)

    Google Scholar 

  • Secchi, R., Innocenti, G., Fiaschi, D.: Supersonic Swirling Separator for natural gas heavy fractions extraction: 1D model with real gas EOS for preliminary design. J. Nat. Gas Sci. Eng. 34, 197–215 (2016). https://doi.org/10.1016/j.jngse.2016.06.061

    Article  Google Scholar 

  • Shandor, M., Stone, A.R., Walker, R.E.: Secondary gas injection in a conical rocket nozzle. AIAA J. 1(2), 334–338 (1963). https://doi.org/10.2514/3.1533

    Article  Google Scholar 

  • Turner, J.: F-18 Hornet High-Speed (Transonic) Flyby (2009). https://www.youtube.com/watch?v=-mr9tam_c9g. Accessed 1 Aug 2017

  • Wilkinson, J.: Wilk4: breaking the sound barrier (and Vapor Cones around Jets) (2012). http://www.wilk4.com/misc/soundbreak.htm. Retrieved 31 Oct 2012

  • Wood, A.B.: A Textbook of Sound: Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments. The Macmillan Company, New York (1930)

    MATH  Google Scholar 

  • Yang, Y., Wen, C., Wang, S., Feng, Y.: Numerical simulation of real gas flows in natural gas supersonic separation processing. J. Nat. Gas Sci. Eng. 21, 829–836 (2014). https://doi.org/10.1016/j.jngse.2014.10.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz de Medeiros .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Medeiros, J.L., Arinelli, L., Araújo, O. (2019). Thermodynamic Speed of Sound for Multiphase Multi-Reactive Equilibrium Systems. In: Offshore Processing of CO2-Rich Natural Gas with Supersonic Separator. Springer, Cham. https://doi.org/10.1007/978-3-030-04006-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04006-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04005-5

  • Online ISBN: 978-3-030-04006-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics