Skip to main content

HSP90 Inhibitors Blocking Multiple Oncogenic Signaling Pathways for the Treatment of Cancer

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone which plays important roles in the development of cancer. Inhibition of the HSP90 chaperone function can disrupt multiple cancer dependent signaling pathways and result in potent anti-cancer effects, which has been a promising anti-cancer strategy. Up to now, HSP90 inhibitors with different mechanisms have been developed, including HSP90 N-terminal inhibitors (pan-isoform and isoform selective), C-terminal inhibitors and HSP90-cochaperone protein-protein interaction (PPI) inhibitors. In this chapter, we will review the current development of HSP90 inhibitors as anti-cancer agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BTZ:

bortezomib

CR:

complete response

CTD:

C-terminal domain

DHPM:

3,4-dihydropyrimidin-2-(1H)-one

DLTs:

dose-limiting toxicities

EGCG:

epigallocatechin gallate

ER:

endoplasmic reticulum

ESCC:

esophageal squamous cell carcinoma

FU:

5-fluorouracil

GRP94:

glucose-regulated protein 94

HGF:

hepatocyte growth factor

HSP:

Heat shock protein

HTRF:

homogeneous time-resolved fluorescence

IGFs:

insulin-like growth factors

IRI:

irinotecan

l-OHP:

oxaliplatin

MD:

middle-domain

MM:

multiple myeloma

MTD:

maximum tolerance dose

NSCLC:

non-small cell lung cancer

NTD:

N-terminal domain

PPI:

protein-protein interaction

PR:

partial response

RDA:

radamide

SD:

stable disease

SDH:

succinate dehydrogenase

SPR:

surface plasmon resonance

TEAEs:

treatment-related adverse events

TRAIL:

TNF-α–related apoptosis-inducing ligand

TRAMP:

transgenic adenocarcinoma of the mouse prostate

TRAP1:

tumor necrosis factor receptor-associated protein-1

References

  • Agorreta J, Hu J, Liu D et al (2014) TRAP1 regulates proliferation, mitochondrial function, and has prognostic significance in NSCLC. Mol Cancer Res 12(5):660–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrott JJ, Haystead TA (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280(6):1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Barton ER, Park S, James JK et al (2012) Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J 26(9):3691–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat R, Adam AT, Lee JJ, Gasiewicz TA, Henry EC, Rotella DP (2014a) Towards the discovery of drug-like epigallocatechin gallate analogs as Hsp90 inhibitors. Bioorg Med Chem Lett 24(10):2263–2266

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Tummalapalli SR, Rotella DP (2014b) Progress in the discovery and development of heat shock protein 90 (Hsp90) inhibitors. J Med Chem 57(21):8718–8728

    Article  CAS  PubMed  Google Scholar 

  • Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee W-C (2010) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Brahmkhatri VP, Prasanna C, Atreya HS (2015) Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int 2015:538019–538042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caboni P, Sherer TB, Zhang N et al (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17(11):1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK (2013) Molecular cochaperones: tumor growth and cancer treatment. Scientifica (Cairo) 2013:217513–217525

    Google Scholar 

  • Chang DJ, An H, Kim KS et al (2012) Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J Med Chem 55(24):10863–10884

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen C, Ma C, Sun S, Zhang J, Sun Y (2015) Expression of heat-shock protein gp96 in gallbladder cancer and its prognostic clinical significance. Int J Clin Exp Pathol 8(2):1946–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chhabra S, Jain S, Wallace C, Hong F, Liu B (2015) High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol 8:77–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chun KH, Kosmeder JW 2nd, Sun S et al (2003) Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 95(4):291–302

    Article  CAS  PubMed  Google Scholar 

  • Costantino E, Maddalena F, Calise S et al (2009) TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells. Cancer Lett 279(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Deep G, Agarwal R (2007) Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr Cancer Ther 6(2):130–145

    Article  CAS  PubMed  Google Scholar 

  • Dejeans N, Glorieux C, Guenin S et al (2012) Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: implications for tumor recurrence. Free Radic Biol Med 52(6):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerfeldt AS, Peterson LB, Maynard JC et al (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134(23):9796–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • East AJ, Ollis WD, Wheeler RE (1969) Natural occurrence of 3-aryl-4-hydroxycoumarins. Part I. Phytochemical examination of Derris robusta (Roxb.) Benth. J Chem Soc C 3(3):365–374

    Article  Google Scholar 

  • Ernst JT, Liu M, Zuccola H et al (2014a) Correlation between chemotype-dependent binding conformations of HSP90alpha/beta and isoform selectivity-implications for the structure-based design of HSP90alpha/beta selective inhibitors for treating neurodegenerative diseases. Bioorg Med Chem Lett 24(1):204–208

    Article  CAS  PubMed  Google Scholar 

  • Ernst JT, Neubert T, Liu M et al (2014b) Identification of novel HSP90alpha/beta isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington’s disease. J Med Chem 57(8):3382–3400

    Article  CAS  PubMed  Google Scholar 

  • Flaig TW, Gustafson DL, Su LJ et al (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig New Drugs 25(2):139–146

    Article  CAS  Google Scholar 

  • Flaig TW, Glode M, Gustafson D et al (2010) A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate 70(8):848–855

    CAS  PubMed  Google Scholar 

  • Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14(9):E358–E369

    Article  CAS  PubMed  Google Scholar 

  • Gewirth DT (2016) Paralog specific Hsp90 inhibitors – a brief history and a bright future. Curr Top Med Chem 16(25):2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BS (2007) Derrubone, an inhibitor of the Hsp90 protein folding machinery. J Nat Prod 70(12):2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Hastings JM, Hadden MK, Blagg BS (2008) Synthesis and evaluation of derrubone and select analogues. J Org Chem 73(2):369–373

    Article  CAS  PubMed  Google Scholar 

  • Hoh C, Boocock D, Marczylo T et al (2006) Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res 12(9):2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Liu B, Chiosis G, Gewirth DT, Li Z (2013) alpha7 helix region of alphaI domain is crucial for integrin binding to endoplasmic reticulum chaperone gp96: a potential therapeutic target for cancer metastasis. J Biol Chem 288(25):18243–18248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, White-Gilbertson S, Kellner J et al (2013) Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. Clin Cancer Res 19(22):6242–6251

    Article  CAS  PubMed  Google Scholar 

  • Immormino RM, Metzger LE t, Reardon PN, Dollins DE, Blagg BS, Gewirth DT (2009) Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J Mol Biol 388(5):1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Wang HJ, Bao QC et al (2016a) Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties. Bioorg Med Chem 24(21):5431–5439

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Wang HJ, Jin YH et al (2016b) Novel tetrahydropyrido[4,3-d]pyrimidines as potent inhibitors of chaperone heat shock protein 90. J Med Chem 59(23):10498–10519

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Guo AP, Xu JC et al (2017) Identification and optimization of novel 6-acylamino-2-aminoquinolines as potent Hsp90 C-terminal inhibitors. Eur J Med Chem 141:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M, Lamottke B, Mieth M et al (2010) Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Haematol 84(4):337–344

    Article  CAS  PubMed  Google Scholar 

  • Kang BH, Plescia J, Song HY et al (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119(3):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BH, Siegelin MD, Plescia J et al (2010) Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16(19):4779–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BH, Tavecchio M, Goel HL et al (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 104(4):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Paul S (2014) Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer’s disease. Med Hypotheses 83(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Crowley VM, Blagg BSJ (2017) Resorcinol-based Grp94-selective inhibitors. ACS Med Chem Lett 8(10):1013–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Hong M, Lee SC et al (2015) Ring-truncated deguelin derivatives as potent Hypoxia Inducible Factor-1alpha (HIF-1alpha) inhibitors. Eur J Med Chem 104:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Hong M, Ann J et al (2016) Synthesis and biological evaluation of C-ring truncated deguelin derivatives as heat shock protein 90 (HSP90) inhibitors. Bioorg Med Chem 24(22):6082–6093

    Article  CAS  PubMed  Google Scholar 

  • King ER, Wong KK (2012) Insulin-like growth factor: current concepts and new developments in cancer therapy. Recent Pat Anticancer Drug Discov 7(1):14–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa Y, Doi T, Sawaki A, et al. (2017) Phase II study of TAS-116, an oral inhibitor of heat shock protein 90 (HSP90), in metastatic or unresectable gastrointestinal stromal tumor refractory to imatinib, sunitinib and regorafenib. 41st Eur Soc Med Oncol (ESMO) Congr (September 8–12, Madrid) 2017, Abst 1479PD

    Google Scholar 

  • Landriscina M, Amoroso MR, Piscazzi A, Esposito F (2010) Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol Oncol 117(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Leav I, Plescia J, Goel HL et al (2010) Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol 176(1):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lee DH, Lee HS, Choi JS, Kim KW, Hong SS (2008) Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncol Rep 20(1):129–134

    CAS  PubMed  Google Scholar 

  • Lee C, Park HK, Jeong H et al (2015a) Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1. J Am Chem Soc 137(13):4358–4367

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Min HY, Choi H et al (2015b) Synthesis and evaluation of a novel deguelin derivative, L80, which disrupts ATP binding to the C-terminal domain of heat shock protein 90. Mol Pharmacol 88(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Min HY, Choi H et al (2016) Deguelin analogue SH-1242 inhibits Hsp90 activity and exerts potent anticancer efficacy with limited neurotoxicity. Cancer Res 76(3):686–699

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang T, Jiang Y, Lee H-F, Schwartz SJ, Sun D (2009) (−)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with co-chaperones in pancreatic cancer cell line Mia Paca-2. Mol Pharm 6(4):1152–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun L, Hou J et al (2015a) Cell membrane gp96 facilitates HER2 dimerization and serves as a novel target in breast cancer. Int J Cancer 137(3):512–524

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang B, Liu W, Gui M, Peng Z, Meng S (2015b) Blockage of conformational changes of heat shock protein gp96 on cell membrane by an alpha-helix peptide inhibits HER2 dimerization and signaling in breast cancer. PLoS One 10(4):e0124647–e0124658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Staron M, Hong F et al (2013) Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proc Natl Acad Sci U S A 110(17):6877–6882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90 a in prostate cancer cells. Mol Pharmacol 88(1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddalena F, Sisinni L, Lettini G et al (2013) Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1. Mol Oncol 7(5):895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000a) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275(47):37181–37186

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000b) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92(3):242–248

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Hawkes CP, Eletto D et al (2016) A human variant of glucose-regulated protein 94 that inefficiently supports IGF production. Endocrinology 157(5):1914–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SJ, Ghosh S, Stothert AR, Dickey CA, Blagg BS (2017) Transformation of the non-selective aminocyclohexanol-based Hsp90 inhibitor into a Grp94-seletive scaffold. ACS Chem Biol 12(1):244–253

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19(3):347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoir D, Barillé-Nion S, Tonnerre A, Juin P, Duflos M, Bazin M-A (2016) Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90. Eur J Med Chem 119:17–33

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Woo JK, Yazici YD et al (2007) Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J Natl Cancer Inst 99(12):949–961

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo S, Muraoka H, Hashimoto A et al (2012) Evolution of highly selective HSP90α/β Inhibitors with unique binding mode. Eur J Cancer 48:89–89

    Article  Google Scholar 

  • Ohkubo S, Kodama Y, Muraoka H et al (2015) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky O, Ahmed NT, Argon Y (2009) The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol Biol Cell 20(6):1855–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palermo CM, Westlake CA, Gasiewicz TA (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44(13):5041–5052

    Article  CAS  PubMed  Google Scholar 

  • Park H-K, Lee J-E, Lim J et al (2014a) Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim. BMC Cancer 14:431–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park H-K, Lee J-E, Lim J, Kang BH (2014b) Mitochondrial Hsp90s suppress calcium-mediated stress signals propagating from mitochondria to the ER in cancer cells. Mol Cancer 13:148–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HK, Jeong H, Ko E et al (2017) Paralog specificity determines subcellular distribution, action mechanism, and anticancer activity of TRAP1 inhibitors. J Med Chem 60(17):7569–7578

    Article  CAS  PubMed  Google Scholar 

  • Patel PD, Yan P, Seidler PM et al (2013) Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 9(11):677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel HJ, Patel PD, Ochiana SO et al (2015) Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94. J Med Chem 58(9):3922–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson J, Palombella VJ, Fritz C, Normant E (2008) IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother Pharmacol 61(6):923–932

    Article  CAS  PubMed  Google Scholar 

  • Rachidi S, Sun S, Wu BX et al (2015) Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol 62(4):879–888

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Badros AZ, Jagannath S et al (2010a) Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 150(4):428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Chanan-Khan AA, Alsina M et al (2010b) Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase 1 dose-escalation study. Br J Haematol 150(4):438–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Chanan-Khan AA, Lonial S et al (2011) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 153(6):729–740

    Article  CAS  PubMed  Google Scholar 

  • Riebold M, Kozany C, Freiburger L et al (2015) A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med 21(3):276–280

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Ali MM, Meyer P et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Rosser MF, Nicchitta CV (2000) Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J Biol Chem 275(30):22798–22805

    Article  CAS  PubMed  Google Scholar 

  • Samadi AK, Zhang X, Mukerji R, Donnelly AC, Blagg BS, Cohen MS (2011) A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett 312(2):158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciacovelli M, Guzzo G, Morello V et al (2013) The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 17(6):988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton SN, Shawgo ME, Matthews SB et al (2009) KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol Pharmacol 76(6):1314–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomura A, Horiike A, Tambo Y et al (2015) First-in-human phase I dose escalation study of TAS-116, a novel, orally active HSP90α and HSP90β selective inhibitor, in patients with advanced solid tumors. Mol Cancer Ther 14(12 Supplement 2):B87

    Google Scholar 

  • Siegelin MD, Dohi T, Raskett CM et al (2011) Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 121(4):1349–1360

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisinni L, Maddalena F, Lettini G et al (2014) TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol 44(2):573–582

    Article  CAS  PubMed  Google Scholar 

  • Song X, Zhao Z, Qi X et al (2015) Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 6(7):5263–5274

    Article  PubMed  PubMed Central  Google Scholar 

  • Soti C, Racz A, Csermely P (2002) A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277(9):7066–7075

    Article  CAS  PubMed  Google Scholar 

  • Soti C, Vermes A, Haystead TAJ, Csermely P (2003) Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Eur J Biochem 270(11):2421–2428

    Article  CAS  PubMed  Google Scholar 

  • Sreeramulu S, Gande SL, Gobel M, Schwalbe H (2009a) Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chem Int Ed Engl 48(32):5853–5855

    Article  CAS  PubMed  Google Scholar 

  • Sreeramulu S, Jonker HR, Langer T, Richter C, Lancaster CR, Schwalbe H (2009b) The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy. J Biol Chem 284(6):3885–3896

    Article  CAS  PubMed  Google Scholar 

  • Strocchia M, Terracciano S, Chini MG et al (2015) Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun (Camb) 51(18):3850–3853

    Article  CAS  Google Scholar 

  • Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22(8):1604–1612

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Hideshima T, Mimura N et al (2015a) Anti-tumor activities of selective HSP90alpha/beta inhibitor, TAS-116, in combination with bortezomib in multiple myeloma. Leukemia 29(2):510–514

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Kikuchi S, Harada T et al (2015b) Combination of a selective HSP90α/β inhibitor and a RAS-RAF-MEK-ERK signaling pathway inhibitor triggers synergistic cytotoxicity in multiple myeloma cells. PLoS One 10(12):e0143847–e0143866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takanami I (2005) Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. BMC Cancer 5:1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terracciano S, Chini MG, Vaccaro MC et al (2016a) Identification of the key structural elements of a dihydropyrimidinone core driving toward more potent Hsp90 C-terminal inhibitors. Chem Commun (Camb) 52(87):12857–12860

    Article  CAS  Google Scholar 

  • Terracciano S, Foglia A, Chini MG et al (2016b) New dihydropyrimidin-2(1H)-one based Hsp90 C-terminal inhibitors. RSC Adv 6(85):82330–82340

    Article  CAS  Google Scholar 

  • Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int J Cancer 129(12):2916–2927

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Ma P, Sui CG et al (2014) Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells. FEBS J 281(12):2805–2819

    Article  CAS  PubMed  Google Scholar 

  • Ting H, Deep G, Agarwal R (2013) Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 15(3):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PL, Kim S-A, Choi HS, Yoon J-H, Ahn S-G (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10(1):276–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udeani GO, Gerhauser C, Thomas CF et al (1997) Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 57(16):3424–3428

    CAS  PubMed  Google Scholar 

  • Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240

    Article  CAS  PubMed  Google Scholar 

  • Wanderling S, Simen BB, Ostrovsky O et al (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 18(10):3764–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Bao Q-C, Xu X-L et al (2015) Discovery and identification of Cdc37-derived peptides targeting the Hsp90–Cdc37 protein–protein interaction. RSC Adv 5(116):96138–96145

    Article  CAS  Google Scholar 

  • Wang L, Li L, Gu K, Xu XL, Sun Y, You QD (2017a) Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function. Curr Drug Targets 18(13):1572–1585

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li L, Zhou ZH, Jiang ZY, You QD, Xu XL (2017b) Structure-based virtual screening and optimization of modulators targeting Hsp90-Cdc37 interaction. Eur J Med Chem 136:63–73

    Article  CAS  PubMed  Google Scholar 

  • Yanagitani N, Horiike A, Kitazono S, et al. (2017) First-in-human phase I study of an oral HSP90 inhibitor, TAS-116, in advanced solid tumors. 53rd Ann Meet Am Soc Clin Oncol (ASCO) (June 2–6, Chicago) 2017, Abst 2546

    Google Scholar 

  • Yin Z, Henry EC, Gasiewicz TA (2009) (-)-Epigallocatechin-3-gallate is a novel HSP90 inhibitor. Biochemistry 48(2):336–345

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Brandt GE, Galam L, Matts RL, Blagg BSJ (2011) Identification and initial SAR of silybin: an Hsp90 inhibitor. Bioorg Med Chem Lett 21(9):2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Garg G, Zhao J et al (2015) Design, synthesis and biological evaluation of biphenylamide derivatives as Hsp90 C-terminal inhibitors. Eur J Med Chem 89:442–466

    Article  CAS  PubMed  Google Scholar 

  • Zi X, Agarwal R (1999) Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci U S A 96(13):7490–7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Projects 81872737 and 81773639 of the National Natural Science Foundation of China; 2632018ZD15 of the Key Program of China Pharmaceutical University; 2017ZX0-9302003, and 2018ZX09711002-003-006 of the National Major Science and Technology Project of China (Innovation and Development of New Drugs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Dong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, F., Xu, XL., You, QD. (2019). HSP90 Inhibitors Blocking Multiple Oncogenic Signaling Pathways for the Treatment of Cancer. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_20

Download citation

Publish with us

Policies and ethics