Skip to main content

Kinetics of α-Amylase Action on Starch

  • Chapter
  • First Online:
Interdisciplinary Approaches to Food Digestion

Abstract

Starch is a major source of carbohydrate in human diets and its over-consumption can contribute to the development of obesity and to an increased risk of cardiovascular disease and type 2 diabetes. Various starch-rich foods in the human diet are digested at different rates and to different extents. Understanding of the reasons for these observed differences should allow for development of functional foods that are digested relatively slowly. Enzyme kinetic studies of α-amylase action on starch in vitro are valuable for predicting how starch is digested in vivo and for providing understanding of how starch structure and hydrothermal processing (cooking) affect digestibility. Since starch consumed in foods such as cereal products, legumes and root vegetables has usually been subjected to commercial and/or domestic cooking, knowledge of the changes in the kinetics of amylolysis subsequent to starch processing provides important and relevant dietary information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldwin, A. J., Egan, D. L., Warren, F. J., Barker, P. D., Dobson, C. M., Butterworth, P. J., et al. (2015). Investigating the mechanisms of amylolysis of starch granules by solution-state NMR. Biomacromolecules, 16, 1614–1621.

    Article  CAS  Google Scholar 

  • Brand-Miller, J. C., Holt, S. H., Pawlak, D. B., & McMillan, J. (2002). Glycemic index and obesity. The American Journal of Clinical Nutrition, 76, 281S–285S.

    Article  CAS  Google Scholar 

  • Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch/Starke, 63, 395–405.

    Article  CAS  Google Scholar 

  • Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H., & Ellis, P. R. (2012). Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers, 87, 2189–2197.

    Article  CAS  Google Scholar 

  • Canani, R. B., Di Constanzo, M., Leone, I., Pefata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17, 1519–1528.

    Article  CAS  Google Scholar 

  • Dhital, S., Gidley, M. J., & Warren, F. J. (2015). Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implication. Carbohydrate Polymers, 123, 305–312.

    Article  CAS  Google Scholar 

  • Dhital, S., Shrestha, A. K., & Gidley, M. J. (2010). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82, 480–488.

    Article  CAS  Google Scholar 

  • Dhital, S., Warren, F. R., Butterworth, P. J., Ellis, P. R., & Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase: Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875–892.

    Article  CAS  Google Scholar 

  • Dona, A. C., Pages, G., Gilbert, R. G., & Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release. Carbohydrate Polymers, 80, 599–617.

    Article  CAS  Google Scholar 

  • Edwards, C. H., Warren, F. J., Milligan, P. J., Butterworth, P. J., & Ellis, P. R. (2014). A novel method for classifying starch digestion by modeling the amylolysis of plant foods using first-order enzyme kinetic principles. Food and Function, 5, 2751–2758.

    Article  CAS  Google Scholar 

  • Ellis, P. R., Apling, A. C., Leeds, A. R., & Bolster, N. R. (1981). Guar bread: Acceptability and efficacy combined. Studies on blood glucose, serum insulin and satiety in normal subjects. The British Journal of Nutrition, 46, 267–276.

    Article  CAS  Google Scholar 

  • Elodi, P., Mora, S., & Krysteva, M. (1972). Investigation of the active centre of porcine pancreatic amylase. European Journal of Biochemistry, 24, 577–582.

    Article  CAS  Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33–50.

    Google Scholar 

  • Fersht, A. (1999). Enzyme structure and mechanism (pp. 110–111). New York: W.H. Freeman.

    Google Scholar 

  • Goni, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.

    Article  CAS  Google Scholar 

  • Henrissat, B., & Davies, G. J. (2000). Glycoside hydrolases and glycosyltransferases: Families, modules and implications for genomics. Plant Physiology, 124, 1515–1519.

    Article  CAS  Google Scholar 

  • Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, E. P., Gilbert, E. P., et al. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organization and amylase digestibility. Carbohydrate Polymers, 75, 236–245.

    Article  CAS  Google Scholar 

  • Kansou, K., Buleon, A., Gerard, C., & Rolland-Sabaté, A. (2015). Multivariate model to characterize relations between maize mutant starches and hydrolysis kinetics. Carbohydrate Polymers, 133, 497–506.

    Article  CAS  Google Scholar 

  • Kopelman, R. (1988). Fractal reaction kinetics. Science, 241(4873), 1620–1626.

    Article  CAS  Google Scholar 

  • Kung, J.-F. T., Hanrahan, V. M., & Caldwell, M. L. (1953). A comparison of the action of several alpha amylases upon a linear fraction from corn starch. Journal of the American Chemical Society, 75, 5548–5554.

    Article  CAS  Google Scholar 

  • Mahasukhonthachat, K., Sopade, P. A., & Gidley, M. J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 96, 18–28.

    Article  Google Scholar 

  • McCroskey, R., Chang, T., David, H., & Winn, E. (1982). p-Nitrophenylglycosides as substrates for measurement of amylase in serum and urine. Clinical Chemistry, 28, 1787–1791.

    CAS  PubMed  Google Scholar 

  • McGregor, E. A., Janecek, S., & Svensson, B. (2011). Relationship of sequence structure to specificity in the α-amylase family of enzymes. Biochimica et Biophysica Acta, 1546, 1–20.

    Google Scholar 

  • McLaren, A. D. (1963). Enzyme reactions in structurally restricted systems IV. The digestion of insoluble substrates by hydrolytic enzymes. Enzymologia, 26, 237–246.

    CAS  PubMed  Google Scholar 

  • Moretti, R., & Torson, J. S. (2008). A comparison of sugar indicators enables a universal high throughput sugar-1-phosphate nucleotidyltransferase assay. Analytical Biochemistry, 377(2), 251–258.

    Article  CAS  Google Scholar 

  • Patel, H., Royall, P. G., Gaisford, S., Williams, G. R., Edwards, C. H., Warren, F. J., et al. (2016). Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 164, 154–161.

    Article  Google Scholar 

  • Poulsen, B. R., Ruiter, G., Visser, J., Jorgen, J., Iversen, J. J. L. (2003). Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture. Biotechnology Letters, 25, 565–571.

    Article  CAS  Google Scholar 

  • Robyt, J. F., & French, D. (1967). Multiple attack hypothesis of α-amylase: Action of porcine pancreatic, human salivary and Aspergillus oryzae α-amylases. Archives of Biochemistry and Biophysics, 122, 8–16.

    Article  CAS  Google Scholar 

  • Seigner, C., Prodanov, E., & Marchis-Mouren, C. (1995). On porcine pancreatic α-amylase action: Kinetic evidence for the binding of two maltooligosaccharides (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. European Journal of Biochemistry, 148, 161–168.

    Article  Google Scholar 

  • Seigner, C., Proganov, E., & Marchis-Mouren, G. (1987). The determination of substrate binding energies of porcine pancreatic α-amylase by comparing hydrolytic activity towards substrates. Biochimica et Biophysica Acta, 913, 200–209.

    Article  CAS  Google Scholar 

  • Slaughter, S. L., Ellis, P. R., & Butterworth, P. J. (2001). An investigation of the action of porcine pancreatic α-amylase on native and gelatinized starches. Biochimica et Biophysica Acta, 1525, 29–36.

    Article  CAS  Google Scholar 

  • Slaughter, S. L., Ellis, P. R., Jackson, E. C., & Butterworth, P. J. (2002). The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochimica et Biophysica Acta, 1571, 55–63.

    Article  CAS  Google Scholar 

  • Smith, B. W., & Roe, J. H. (1949). A photometric method for the determination of α-amylase in blood and urine with use of the starch-iodine color. The Journal of Biological Chemistry, 179, 53–59.

    CAS  PubMed  Google Scholar 

  • Walker, W. J., & Hope, P. M. (1963). The action of some α-amylases on starch granules. The Biochemical Journal, 86, 452–462.

    Article  CAS  Google Scholar 

  • Warren, F. J., Butterworth, P. J., & Ellis, P. R. (2012). Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch. Carbohydrate Research, 358, 67–71.

    Article  CAS  Google Scholar 

  • Warren, F. J., Butterworth, P. J., & Ellis, P. R. (2013). The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochimica et Biophysica Acta, 1830, 3095–3101.

    Article  CAS  Google Scholar 

  • Warren, F. J., Royall, P. G., Gaisford, S., Butterworth, P. J., & Ellis, P. R. (2011). Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydrate Polymers, 86, 1038–1047.

    Article  CAS  Google Scholar 

  • Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydrate Polymers, 117, 192–200.

    Article  CAS  Google Scholar 

  • Zhang, X., Caner, C., Kwan, E., Li, C., Brayer, G. D., & Withers, S. G. (2016). Evaluation of the significance of starch surface binding sites on human pancreatic α-amylase. Biochemistry, 55, 6000–6009.

    Article  CAS  Google Scholar 

  • Zou, W., Sissons, M., Gidley, M. J., Gilbert, R. G., & Warren, F. J. (2015). Combined technique for characterizing pasta structure reveals how the gluten network slows enzyme digestion. Food Chemistry, 188, 559–568.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butterworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butterworth, P.J., Ellis, P.R. (2019). Kinetics of α-Amylase Action on Starch. In: Gouseti, O., Bornhorst, G., Bakalis, S., Mackie, A. (eds) Interdisciplinary Approaches to Food Digestion. Springer, Cham. https://doi.org/10.1007/978-3-030-03901-1_14

Download citation

Publish with us

Policies and ethics