Skip to main content

Rational Elements (BEZIER, NURBS)

  • Chapter
  • First Online:
Precursors of Isogeometric Analysis

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 256))

  • 1213 Accesses

Abstract

This chapter deals with single macroelements in which the approximation of the variable U is based mostly on rational Bézier and less on nonuniform rational B-splines (NURBS). Since univariate rational Bernstein–Bézier polynomials is a special case of univariate NURBS, it becomes obvious that tensor-product rational Bézier is also a specific case of tensor-product NURBS. The major significance of rational elements is that they accurately represent the geometry of conics (circles, ellipses, parabolas, and hyperbolas). In an instructive way, we focus on the analysis of a circular cavity using a single tensor-product macroelement. It is shown that a single quadratic Bézier macroelement, although is capable of accurately representing the entire circle, it leads to a numerical solution of low quality (slightly worse than the classical nine-node finite element of Lagrangian type). In both cases, this is due to its insufficiency to approximate the eigensolutions (e.g., the eigenvectors in dynamics). Nevertheless, after a sufficient degree elevation which maintains the shape of the circle, it is shown that the higher-order Bézier converges to the exact solution. The presentation continues with a very short summary on the NURBS-based dominating IGA, and the reader is advised for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auricchio F, Calabrò F, Hughes TJR, Reali A, Sangalli G (2012) A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 249–252:15–27

    Article  MathSciNet  Google Scholar 

  2. Buffa A, Sangalli G (eds) (2016) Isogeometric analysis: a new paradigm in the numerical approximation of PDEs. Springer International Publishing, Switzerland

    MATH  Google Scholar 

  3. Chou JJ (1995) Higher order Bézier circles. Comput Aided Des 27(4):303–309

    Article  Google Scholar 

  4. Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356

    Article  MathSciNet  Google Scholar 

  5. Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  6. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    Article  MathSciNet  Google Scholar 

  7. Curry HB, Schoenberg IJ (1966) On Pólya frequency functions IV: the fundamental spline functions and their limits. J Anal Math 17(1):71–107

    Article  Google Scholar 

  8. De Boor C (1972) On calculating with B-splines. J Approximation Theor 6:50–62

    Google Scholar 

  9. De Falco C, Reali A, Vázque R (2011) GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv Eng Softw 42:1020–1034

    Google Scholar 

  10. De Boor C (2001) A practical guide to splines, revised edition. Springer, New York, Berlin

    Google Scholar 

  11. De Boor C (2000) Spline toolbox for use in MATLAB, user’s guide, version 3. The MathWorks Inc

    Google Scholar 

  12. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  13. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313

    Article  MathSciNet  Google Scholar 

  14. Höllig K (2003) Finite element methods with B-splines. SIAM, Philadelphia

    Book  Google Scholar 

  15. Höllig K (2002) Finite element approximation with splines. In: Farin G, Hoschek J, Kim MS (eds) Handbook of computer aided geometric design. North-Holland, Amsterdam, Chapter 11, pp 283–307

    Chapter  Google Scholar 

  16. Kanarachos A, Röper O (1979) Rechnerunterstützte netzgenerierung mit hilfe der Coonsschen abbildung. VDI-Z 121:297–303

    Google Scholar 

  17. Karatarakis A, Karakitsios P, Papadrakakis M (2014) GPU accelerated computation of the isogeometric analysis stiffness matrix. Comput Methods Appl Mech Eng 269:334–355

    Article  MathSciNet  Google Scholar 

  18. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

    Article  MathSciNet  Google Scholar 

  19. Piegl L, Tiller W (1989) Circles: a menagerie of rational B-splines circles. IEEE Comput Appl 9(5):48–56

    Article  Google Scholar 

  20. Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin

    Book  Google Scholar 

  21. Prautzsch H (1984) Degree elevation of B-spline curves. Comput Aided Geom Des 1(1):193–198

    Article  Google Scholar 

  22. Provatidis CG (2004) On DR/BEM for eigenvalue analysis of 2-D acoustics. Comput Mech 35:41–53

    Article  Google Scholar 

  23. Provatidis CG (2004) Coons-patch macroelements in two-dimensional eigenvalue and scalar wave propagation problems. Comput Struct 82(4–5):383–395

    Article  MathSciNet  Google Scholar 

  24. Provatidis CG (2004) Solution of two-dimensional Poisson problems in quadrilateral domains using transfinite Coons interpolation. Commun Numer Methods Eng 20(7):521–533

    Article  MathSciNet  Google Scholar 

  25. Provatidis CG (2009) Eigenanalysis of two-dimensional acoustic cavities using transfinite interpolation. J Algorithms Comput Technol 3(4):477–502

    Article  MathSciNet  Google Scholar 

  26. Provatidis CG (2006) Coons-patch macroelements in two-dimensional parabolic problems. Appl Math Model 30(4):319–351

    Article  Google Scholar 

  27. Rypl D, Patzák B (2012) Study of computational efficiency of numerical quadrature schemes in the isogeometric analysis. In: Proceedings 18th international conference engineering mechanics 2012, Svratka, Czech Republic, 14–17 May 2012, Paper #304, pp 1135–1143

    Google Scholar 

  28. Schillinger D, Hossain SJ, Hughes TJR (2014) Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput Methods Appl Mech Eng 277:1–45

    Article  Google Scholar 

  29. Schmidt R, Kiendl J, Bletzinger K-U, Wüchner R (2010) Realization of an integrated structural design process: analysis-suitable geometric modeling and isogeometric analysis. Comput Vis Sci 13:315–330

    Article  Google Scholar 

  30. Vuong A-V, Heinrich Ch, Simeon B (2010) ISOGAT: a 2D tutorial MATLAB code for isogeometric analysis. Comput Aided Geom Des 27:644–655

    Article  MathSciNet  Google Scholar 

  31. Xu G, Mourrain B, Duvigneau R, Galligo A (2011) Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200:2021–2031

    Article  MathSciNet  Google Scholar 

  32. Xu G, Mourrain B, Duvigneau R, Galligo A (2013) Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput Aided Des 45:395–404

    Article  MathSciNet  Google Scholar 

  33. Xu G, Mourrain B, Duvigneau R, Galligo A (2013) Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Comput Aided Des 45:812–821

    Article  MathSciNet  Google Scholar 

  34. Xu G, Mourrain B, Galligo A, Rabczuk T (2014) High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods. Comput Mech 54:1303–1313

    Article  MathSciNet  Google Scholar 

  35. Zienkiewicz OC (1977) The finite element method, 3rd edn. McGraw-Hill, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Provatidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Provatidis, C.G. (2019). Rational Elements (BEZIER, NURBS). In: Precursors of Isogeometric Analysis. Solid Mechanics and Its Applications, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-030-03889-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03889-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03888-5

  • Online ISBN: 978-3-030-03889-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics