Skip to main content

Global Collocation Using Macroelements

  • Chapter
  • First Online:
  • 1155 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 256))

Abstract

The CAD-based global approximation of the approximate solution within a patch (or a volume block ) leads to large matrices, and therefore, high computer effort is required. The involved matrices may be either fully populated (as happens when using Lagrange and Bernstein–Bézier polynomials) or partially populated (thanks to the compact support of B-splines and NURBS ). This fact is the motivation for preserving the global basis functions but replacing the Galerkin –Ritz with a collocation method which is here called the “global collocation method.” In the latter method, each element of the large matrices can be calculated without performing domain integration, since only a substitution of the basis functions into the partial differential operator is needed. Nevertheless, the numerical solution is highly influenced by the location of the so-called collocation points, and this is an open topic for research. Through a number of test problems, it will be shown that the global collocation method performs equally well in 1D, 2D, and 3D, static and dynamic, problems. Numerical results are presented for a broad spectrum of test problems, such as eigenvalue analysis of rods and beams, transient thermal analysis, plane elasticity , rectangular and circular acoustic cavities and plates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On the contrary, in the case of Lagrange polynomials there is no skepticism, since then we have to put the collocation points at the location of the roots of Legendre polynomials (which correspond to 5-point Gauss quadrature).

References

  1. Acrivos A (1958) Combined laminar free-and forced-convection heat transfer in external flows. AIChE 4:285–289

    Article  Google Scholar 

  2. Anitescu C, Jia Y, Zhang Y, Rabczuk T (2015) An isogeometric collocation method using superconvergent points. Comput Methods Appl Mech Eng 284:1073–1097

    Article  MathSciNet  MATH  Google Scholar 

  3. Ascher UM, Mattheij RMM, Russell RD (1995) Numerical solutions of boundary value problems for ordinary differential equations, 2nd edn. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  4. Auricchio F, Beirão da Veiga L, Hughes TGR, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math Models Methods Appl Sci 20(11):2075–2107

    Article  MathSciNet  MATH  Google Scholar 

  5. Auricchio F, Beirão da Veiga L, Hughes TJR, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 249–252:2–14

    Article  MathSciNet  MATH  Google Scholar 

  6. Bialecki B, Fairweather G (2001) Orthogonal spline collocation methods for partial differential equations. J Comput Appl Math 128(1–2):55–82

    Article  MathSciNet  MATH  Google Scholar 

  7. Botha JF, Pinder GF (1983) Fundamental concepts in the numerical solution of differential equations. Wiley, New York

    MATH  Google Scholar 

  8. Carey GF, Finlayson BA (1975) Orthogonal collocation on finite elements. Chem Eng Sci 30:587–596

    Article  Google Scholar 

  9. Carey GF, Oden JT (1983) Finite elements: a second course, vol II. Prentice-Hall, Englewoods Cliffs, New Jersey

    MATH  Google Scholar 

  10. Cavendish JC, Gordon WJ, Hall CA (1976) Ritz-Galerkin approximations in blending function spaces. Numer Math 26:155–178

    Article  MathSciNet  MATH  Google Scholar 

  11. Cavendish JC (1972) Collocation methods for elliptic and parabolic boundary value problems. Ph.D. Dissertation, University of Pittsburgh, USA

    Google Scholar 

  12. Cavendish JC, Hall CA (1974) L∞-convergence of collocation and Galerkin approximations to linear two-point parabolic problems. Aequationes Math 11(2–3):230–249

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen JT, Chang MH, Chen KH, Lin SR (2002) The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function. J Sound Vib 257(4):667–711

    Article  Google Scholar 

  14. Chen JT, Chang MH, Chen KH, Chen IL (2002) Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function. Comput Mech 29:392–408

    Article  MATH  Google Scholar 

  15. Collatz L (1960) The Numerical Treatment of Differential Equations. Springer, Berlin

    MATH  Google Scholar 

  16. De Boor C (1966) The method of projections as applied to the numerical solution of the two point boundary value problems using cubic splines. Dissertation, Univ. Michigan

    Google Scholar 

  17. De Boor C, Swartz B (1973) Collocation at Gaussian points. SIAM J Numer Anal 10:582–606

    Article  MathSciNet  MATH  Google Scholar 

  18. De Boor C (2001) A practical guide to splines, revised edition. Springer, New York (former edition: Applied mathematical sciences, vol 27. Springer, New York, 1978)

    Google Scholar 

  19. De Lorenzis L, Evans JA, Hughes TJR, Reali A (2015) Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng 284:21–54

    Article  MathSciNet  MATH  Google Scholar 

  20. Diaz J (1977) A collocation-Galerkin method for the two-point boundary-value problem using continuous piecewise polynomial spaces. SIAM J Numer Anal 14(5):844–858

    Article  MathSciNet  MATH  Google Scholar 

  21. Elansari M, Quazar D, Cheng AH-D (2001) Boundary solution of Poisson’s equation using radial basis function collocated on Gaussian quadrature nodes. Commun Numer Methods Eng 17:455–464

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans JA, Hiemstra RR, Hughes TJR, Reali A (2018) Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput Methods Appl Mech Eng 338:208–240

    Article  MathSciNet  Google Scholar 

  23. Fairweather G, Meade D (1989) Survey of spline collocation methods for the numerical solution of differential equations. In: Diaz JC (ed) Mathematics for large scale computing. Lecture notes in pure applied mathematics, vol 120. Marcel Dekker, New York, pp 297–341

    Google Scholar 

  24. Farin G (1990) Curves and surfaces for computer aided geometric design: a practical guide. Academic Press, Boston

    MATH  Google Scholar 

  25. Filippatos A (2010) Eigenvalue extraction for acoustic cavities and elastic structures using the global collocation method, MSc—Diploma Work (supervised by Prof. C. G. Provatidis), National Technical University of Athens, Athens, School of Mechanical Engineering

    Google Scholar 

  26. Finlayson BA, Scriven LE (1966) The method of weighted residuals—a review. Appl Mech Rev 19:735–748

    Google Scholar 

  27. Finlayson BA (1972, 2014) The method of weighted residuals and variational principles. Academic Press, New York (SIAM, Philadelphia, 2014)

    Google Scholar 

  28. Frind EO, Pinder GF (1979) A collocation finite element method for potential problems in irregular domains. Int J Numer Methods Eng 14:681–701

    Article  MathSciNet  MATH  Google Scholar 

  29. Gordon WJ (1971) Blending functions methods of bivariate multivariate interpolation and approximation. SIAM J Numer Anal 8:158–177

    Article  MathSciNet  MATH  Google Scholar 

  30. Gordon WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21:109–129

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayes LJ (1980) An alternative-direction collocation method for finite element approximations on rectangles. Comput Math Appl 6:45–50

    Article  MathSciNet  MATH  Google Scholar 

  32. Houstis E (1978) A collocation method for systems of nonlinear ordinary differential equations. J Math Anal Appl 62:24–37

    Article  MathSciNet  MATH  Google Scholar 

  33. Isidorou SK, Provatidis CG (2009) Comparison of advanced collocation methods for the solution of ordinary differential equations. In: Proceedings 3rd international conference on experiments/process/system modeling/simulation and optimization (3rd IC-EpsMsO), Athens, 8–11 July 2009

    Google Scholar 

  34. Jator S, Sinkala Z (2007) A high order B-spline collocation method for linear boundary value problems. Appl Math Comput 191:100–116

    MathSciNet  MATH  Google Scholar 

  35. Johnson RW (2003) Progress on the development of B-spline collocation for the solution of differential model equations: a novel algorithm for adaptive knot insertion. INEEL/CON-02-01471, Preprint, Idaho National Engineering and Environmental Laboratory. Available online from: https://pdfs.semanticscholar.org/fe20/02f2bd49798ad2a73ebc022bde7e6dcc14ae.pdf

  36. Johnson RW (2005) Higher order B-spline collocation at the Greville Absissae. Appl Numer Math 52(1):63–75

    Article  MathSciNet  MATH  Google Scholar 

  37. Kanarachos AE, Deriziotis DG (1989) On the solution of Laplace and wave propagation problems using “C-elements”. Finite Elem Anal Des 5:97–109

    Article  MATH  Google Scholar 

  38. Kanarachos A, Provatidis C, Deriziotis D, Foteas N (1999), A new approach of the FEM analysis of two-dimensional elastic structures using global (Coons’s) interpolation functions. In: Wunderlich J (ed) CD proceedings 1st european conference on computational mechanics, München-Germany, August–September, 1999

    Google Scholar 

  39. Kołodziej JA, Zielinski AP (2009) Boundary collocation techniques and their application in engineering. WIT Press, Ashurst Lodge

    Google Scholar 

  40. Kwok WY, Moser RD, Jiménez J (2001) A critical evaluation of the resolution properties of B-spline and compact finite difference methods. J Comput Phys 174(2):510–551

    Article  MATH  Google Scholar 

  41. Lanczos C (1938) Trigonometric interpolation of empirical and analytical functions. J Math Phys 17:123–199

    Article  MATH  Google Scholar 

  42. Li ZC, Lu TT, Huang HT, Cheng AHD (2007) Trefftz, collocation, and other boundary methods—a comparison. Numer Methods Partial Differ Equ 23:93–144

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu X, Liu GR, Tai K, Lam KY (2005) Radial point interpolation collocation method (RPICM) for the solution of nonlinear Poisson problems. Comput Mech 36:298–306

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu GR, Wang JG (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648

    Article  MATH  Google Scholar 

  45. Liszka TJ, Duarte CA, Tworzydlo WW (1996) Hp-meshless cloud method. Comput Methods Appl Mech Eng 139:263–288

    Article  MATH  Google Scholar 

  46. Morganti S, Auricchio F, Callari C, De Lorenzis L, Evans JA, Hughes TJR, Reali A (2018) Mixed isogeometric collocation methods. In: 6th European conference on computational mechanics (ECCM6), pp 11–June 15 2018, Glasgow. Available online at: http://congress.cimne.com/eccm_ecfd2018/admin/files/fileabstract/a2210.pdf

  47. Provatidis CG (2006) Coons patch macroelements in two-dimensional parabolic problems. Appl Math Model 30(4):319–351

    Article  MATH  Google Scholar 

  48. Provatidis CG (2006) Free vibration analysis of two-dimensional structures using Coons patch macroelements. Finite Elem Anal Des 42(6):518–531

    Article  MATH  Google Scholar 

  49. Provatidis CG (2006) Three-dimensional Coons macroelements: application to eigenvalue and scalar wave propagation problems. Int. J. Nume. Methods Eng 65(1):111–134

    Article  MATH  Google Scholar 

  50. Provatidis CG (2006) Transient elastodynamic analysis of two-dimensional structures using Coons patch macroelements. Int J Solids Struct 43(22–23):6688–6706

    Article  MATH  Google Scholar 

  51. Provatidis CG (2007) Performance of a Lagrange based global finite element collocation method for eigenvalue structural analysis. In: Proceedings 8th Hellenic society of theoretical and applied mechanics (HSTAM) congress, 12–14 July 2007, Patras, Greece

    Google Scholar 

  52. Provatidis CG (2008) Global collocation method for 2-D rectangular domains. J Mech Mater Struct 3(1):185–194

    Article  Google Scholar 

  53. Provatidis CG (2008) Free vibration analysis of elastic rods using global collocation. Arch Appl Mech 78(4):241–250

    Article  MATH  Google Scholar 

  54. Provatidis CG (2008) Time- and frequency-domain analysis using lumped mass global collocation. Arch Appl Mech 78(11):909–920

    Article  MATH  Google Scholar 

  55. Provatidis CG (2008d) Analysis of one-dimensional wave propagation problems using global collocation. In: Proceedings 6th GRACM international congress on computational mechanics, 19–21 June, 2008, Thessaloniki, Greece

    Google Scholar 

  56. Provatidis CG (2009) Integration-free Coons macroelements for the solution of 2-D Poisson problems. Int J Numer Meth Eng 77:536–557

    Article  MathSciNet  MATH  Google Scholar 

  57. Provatidis CG, Ioannou KS (2010) Static analysis of two-dimensional elastic structures using global collocation. Arch Appl Mech 80(4):389–400

    Article  MATH  Google Scholar 

  58. Provatidis CG, Isidorou SK (2011) B-splines collocation eigenvalue analysis of 1-D problems. In: Proceedings 7th GRACM international congress on computational mechanics, June 30–2 July 2011, Athens, Greece

    Google Scholar 

  59. Provatidis CG, Isidorou SK (2012) Solution of one-dimensional hyperbolic problems using cubic B-splines collocation. Int J Comput Sci Appl (IJCSA) 1(1):12–18. Journal Website: http://www.ij-csa.org/, Paper in PDF: http://www.ij-csa.org/Download.aspx?ID=2225

  60. Provatidis CG (2014) Lumped mass acoustic and membrane eigenanalysis using the global collocation method. Cogent Eng 1(1):981366. (http://www.tandfonline.com/doi/abs/10.1080/23311916.2014.981366#.VIKnImc-eSo)

  61. Provatidis CG (2014) B-splines collocation eigenanalysis of 2D acoustic problems. J Mech Mater Struct 9(3):259–285

    Article  Google Scholar 

  62. Provatidis CG (2014) Bézier versus Lagrange polynomials-based finite element analysis of 2-D potential problems. Adv Eng Softw 73:22–34

    Article  Google Scholar 

  63. Provatidis C (2015) Lumped mass collocation method for 2D elastodynamic analysis. Int J Adv Eng Technol Comput Sci 2(2):1–15. (http://www.irosss.org/ojs/index.php/IJAETCS/article/view/676/207)

  64. Provatidis C, Fillipatos A (2015) Numerical determination of eigenfrequencies in two-dimensional acoustic cavities using a global collocation method. Rom J Acoust Vibr 12(2):111–115

    Google Scholar 

  65. Provatidis CG (2017) CAD-based collocation eigenanalysis of 2-D elastic structures. Comput Struct 182:55–73

    Article  Google Scholar 

  66. Provatidis CG (2017) B-splines collocation for plate bending eigenanalysis. J Mech Mater Struct 12(4):353–371

    Article  MathSciNet  Google Scholar 

  67. Ronto NI (1971) Application of the method of collocation to solve boundary value problems. Ukrainskii Matematicheskii Zhurnal 23(3):415–421

    Google Scholar 

  68. Russell RD, Shampine LF (1972) A collocation method for boundary value problems. Numer Math 19:1–28

    Article  MathSciNet  MATH  Google Scholar 

  69. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  70. Ugural AC (1981) Stresses in plates and shells. McGraw-Hill, New York

    Google Scholar 

  71. Van Blerk JJ, Botha JF (1993) Numerical solution of partial differential equations on curved domains by collocation. Numer Methods Partial Diff Equ 9:357–371

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang X, Song KZ, Lu MW, Liu X (2003) Meshless methods based on collocation with radial basis function. Comput Mech 30:396–409

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Provatidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Provatidis, C.G. (2019). Global Collocation Using Macroelements. In: Precursors of Isogeometric Analysis. Solid Mechanics and Its Applications, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-030-03889-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03889-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03888-5

  • Online ISBN: 978-3-030-03889-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics