Skip to main content

Novelty-Aware Matrix Factorization Based on Items’ Popularity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

Abstract

The search for unfamiliar experiences and novelty is one of the main drivers behind all human activities, equally important with harm avoidance and reward dependence. A recommender system personalizes suggestions to individuals to help them in their exploration tasks. In the ideal case, these recommendations, except of being accurate, should be also novel. However, up to now most platforms fail to provide both novel and accurate recommendations. For example, a well-known recommendation algorithm, such as matrix factorization (MF), tries to optimize only the accuracy criterion, while disregards the novelty of recommended items. In this paper, we propose a new model, denoted as popularity-based NMF, that allows to trade-off the MF performance with respect to the criteria of novelty, while only minimally compromising on accuracy. Our experimental results demonstrate that we attain high accuracy by recommending also novel items.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  2. Castells, P., Hurley, N.J., Vargas, S.: Novelty and diversity in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 881–918. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_26

    Chapter  Google Scholar 

  3. Charles, C., et al.: Novelty and diversity in information retrieval evaluation. In: SIGIR Conference, SIGIR 2008, pp. 659–666 (2008)

    Google Scholar 

  4. Cheng, P., Wang, S., Ma, J., Sun, J., Xiong, H.: Learning to recommend accurate and diverse items. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 183–192 (2017). https://doi.org/10.1145/3038912.3052585

  5. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 39–46. ACM, New York (2010). https://doi.org/10.1145/1864708.1864721

  6. De Gemmis, M., Lops, P., Semeraro, G., Musto, C.: An investigation on the serendipity problem in recommender systems. Inf. Process. Manag. 51(5), 695–717 (2015). https://doi.org/10.1016/j.ipm.2015.06.008. https://www.sciencedirect.com/science/article/pii/S0306457315000837

    Article  Google Scholar 

  7. Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: NIPS, pp. 283–290 (2005)

    Google Scholar 

  8. Furnas, G., Deerwester, S., Dumais, S.T.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Proccedings ACM SIGIR Conference, pp. 465–480 (1988)

    Google Scholar 

  9. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015). https://doi.org/10.1145/2827872

    Article  Google Scholar 

  10. Harper, F.M., Konstan, J.A.: The MovieLens datasets. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

    Article  Google Scholar 

  11. Hurley, N.J.: Personalised ranking with diversity. Proceedings of the 7th ACM Conference on Recommender Systems - RecSys 2013, vol. 2, no. 1, pp. 379–382 (2013). https://doi.org/10.1145/2507157.2507226. http://dl.acm.org/citation.cfm?doid=2507157.2507226

  12. Jannach, D., Lerche, L., Kamehkhosh, I., Jugovac, M.: What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User-Adap. Inter. 25(5), 427–491 (2015)

    Article  Google Scholar 

  13. Jannach, D., Resnick, P., Tuzhilin, A., Zanker, M.: Recommender systems - beyond matrix completion. Commun. ACM 59(11), 94–102 (2016). https://doi.org/10.1145/2891406

    Article  Google Scholar 

  14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 42–49 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  15. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  16. Lin, C.J.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)

    Article  Google Scholar 

  17. Mahoney, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. Proc. Nat. Acad. Sci. 106(3), 697–702 (2009). https://doi.org/10.1073/pnas.0803205106. http://www.pnas.org/content/106/3/697.abstract

    Article  MathSciNet  MATH  Google Scholar 

  18. Ning, X., Karypis, G.: SLIM: Sparse linear methods for top-N recommender systems. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 497–506. IEEE (2011)

    Google Scholar 

  19. Ning, X., Karypis, G.: Sparse linear methods with side information for top-n recommendations. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 155–162. ACM (2012)

    Google Scholar 

  20. Rendle, S., Freudenthaler, C., Gantner, Z., Lars, S.T.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington (2009). http://portal.acm.org/citation.cfm?id=1795114.1795167

  21. Tomeo, P., Di Noia, T., De Gemmis, M., Lops, P., Semeraro, G., Sciascio, E.D.: Exploiting regression trees as user models for intent-aware multi-attribute diversity. Technical report. http://grouplens.org/datasets/movielens

  22. Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 109–116. ACM, New York (2011). https://doi.org/10.1145/2043932.2043955

  23. Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommendation. Proc. VLDB Endowment 5(9), 896–907 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovik Coba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coba, L., Symeonidis, P., Zanker, M. (2018). Novelty-Aware Matrix Factorization Based on Items’ Popularity. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics