Skip to main content

Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling

  • Chapter
  • First Online:
Measurement in Machining and Tribology

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

This chapter reveals the modern objective of metal cutting processes as increased productivity of multiple machining operations. It is discussed that the only feasible option to increase productivity is increasing the cutting speed. The chapter further analyzed the known attempt to increase the cutting speed showing that the cutting temperature is the major constraint in such an endeavor. It is explained the notion of the optimal cutting temperature explaining that its wide acceptance is limited by lack of a physical explanation of its nature. The physical essence of the optimal cutting temperature is revealed. The place where the temperature in metal cutting should be measured is explained. The basic methods of measuring temperatures in metal cutting are discussed. Infrared measuring technology is explained in details including its physical principle, advantages and limitations, and use of very short-wave cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astakhov VP (2017) Improving sustainability of machining operation as a system endeavor. In: Davim JP (ed) Sustainable machining. Springer, London

    Google Scholar 

  2. Astakhov V, Xiao X (2016) The principle of minimum strain energy to fracture of the work material and its application in modern cutting technologies. In: Paulo Davim J (ed) Metal cutting technologies—progress and current trends. De Gruyter Publishers, pp 1–35

    Google Scholar 

  3. Rehorn AG (2005) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26:693–710

    Article  Google Scholar 

  4. Astakhov VP (2014) Drills: science and technology of advanced operations. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Taylor FW (1907) On the art of cutting metals. Trans ASME 28:70–350

    Google Scholar 

  6. Astakhov VP (2008) Tools (geometry and material) and tool wear. In: Davim PJ (ed) Machining: fundamentals and recent advances. Springer, London, pp 29–58

    Chapter  Google Scholar 

  7. King RI (1985) Historical background (Chap. 1). In: King RI (ed) Handbook of high-speed machining technology. Chapman and Hall, New York

    Chapter  Google Scholar 

  8. Erdel BP (2003) High-speed machining. SME, Dearborn

    Google Scholar 

  9. Longbottom JM (2006) A review of research related to Salomon’s hypothesis on cutting speeds and temperatures. Int Mach Tools Manuf 56:1740–1747

    Article  Google Scholar 

  10. Astakhov VP (1998) Metal cutting mechanics. CRC Press, Boca Raton

    Google Scholar 

  11. Obenchain TG (2016) Genius belabored: childbed fever and the tragic life of Ignaz Semmelweiss. University of Alabama Press, Tuscaloosa

    Google Scholar 

  12. Makarow AD (1976) Optimization of cutting processes. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  13. Astakhov VP (2004) Tribology of metal cutting. In: Totten G, Liang H (eds) Mechanical tribology. Material characterization and application. Marcel Dekker, pp 10–50

    Google Scholar 

  14. Shaw MC (2004) Metal cutting principles, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  15. Stephenson DA (1993) Tool-work thermocouple temperature measurements-theory and implementation issues. J Eng Ind 115:432–437

    Article  Google Scholar 

  16. Longbottom JM (2009) Cutting temperature measurement while machining—a review. Aircr Eng Aerosp Technol 77:122–130

    Article  Google Scholar 

  17. Kaminise AK (2014) Development of a tool–work thermocouple calibration system with physical compensation to study the influence of tool-holder material on cutting temperature in machining. Int J Adv Manuf Technol 73:735–747

    Article  Google Scholar 

  18. Silin SS (1979) Similarity methods in metal cutting (in Russian)

    Google Scholar 

  19. Time I (1870) Resistance of metals and wood to cutting. Dermacow Press House, St. Petersburg (in Russian)

    Google Scholar 

  20. Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47:1649–1672

    Article  Google Scholar 

  21. Usui E (1988) Progress of ‘predictive’ theories in metal cutting. JSME Int J 31:363–369

    Google Scholar 

  22. Roll K (2008) Simulation of sheet metal forming—necessary developments in the future. Presented at the 7th international conference and workshop on numerical simulation of 3D sheet metal forming processes (NUMISHEET), pp 3–11

    Google Scholar 

  23. Boothroyd G (2006) Fundamentals of machining and machine tools, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  24. Abushawashi Y, Xiao X, Astakhov VP (2013) A novel approach for determining material constitutive parameters for a wide range of triaxiality under plane strain loading conditions. Int J Mech Sci 74:133–142

    Article  Google Scholar 

  25. Outeiro JC, Umbrello D, Pina JC, M’Saoubi R (2007) Modeling of tool wear and residual stress during machining of AISI H13 tool steel. Presented at the 9th international conference on numerical methods in industrial forming processes (NUMIFORM’07), vol 908

    Google Scholar 

  26. Umbrello D, Rizzuti S, Outeiro JC, Shivpuri R, M’Saoubi R (2008) Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel. J Mater Process Technol 199(1–3):64–73

    Article  Google Scholar 

  27. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental assessment of temperature distribution in three-dimensional cutting process. Mach Sci Technol 8:357–376

    Article  Google Scholar 

  28. Johnson GR (1983) A constructive model and data for metals subjected to large strains, high strain rates and high temperatures. Presented at the proceedings of the 7th international symposium on ballistics, pp 541–547

    Google Scholar 

  29. Astakhov VP (2018) Mechanical properties of engineering materials: relevance in design and manufacturing. In: Davim JP (ed) Introduction to mechanical engineering. Springer, London, pp 3–41

    Chapter  Google Scholar 

  30. Keeler S, Backofen W (1963) Plastic instability and fracture in sheets stretched over rigid punches. ASM Trans Q 56(1):25–48

    Google Scholar 

  31. Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. In: SAE international, Warrendale, PA, SAE Technical Paper 680093, Feb 1968

    Google Scholar 

  32. Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863

    Article  Google Scholar 

  33. Astakhov VP (2012) Tribology of cutting tools. In: Davim PJ (ed) Tribology in manufacturing technology. Springer, New York, pp 1–66

    Google Scholar 

  34. Atkins AG, Mai YW (1985) Elastic and plastic fracture: metals, polymers. Ceramics, composites, biological materials. Wiley, New York

    Google Scholar 

  35. Komarovsky AA, Astakhov VP (2002) Physics of strength and fracture control: fundamentals of the adaptation of engineering materials and structures. CRC Press, Boca Raton

    Google Scholar 

  36. Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford

    Google Scholar 

  37. Davies MA, Ueda T, M’Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. CIRP Ann—Manuf Technol 56(2):581–604

    Article  Google Scholar 

  38. Pajani D (1996) High temperatures measurement: choosing the spectral range, measurement range, sensitivity and exactitude. Presented at the proceedings of the quantitative InfraRed thermography (QIRT’96)

    Google Scholar 

  39. Dewitt D, Nutter G (1988) Theory and practice of radiation thermometry. Wiley, New York

    Book  Google Scholar 

  40. Gaussorgues G (1989) Infrared thermography. Chapman and Hall

    Google Scholar 

  41. Childs PRN (2001) Practical temperature measurement. Butterworth-Heinemann

    Google Scholar 

  42. Boothroyd G (1963) Temperatures in orthogonal metal cutting. Proc Inst Mech Eng 177:789–802

    Article  Google Scholar 

  43. Malitzki H, Radtke U, Barnikow A-M (1979) Messung von Temperaturfeldern im Spanwurzelgebiet beim Drehen. Feingeratetechnik 28:68–71

    Google Scholar 

  44. Spur G, Beyer H (1973) Erfassung der Temperaturverteilung am Drehmeissel mit Hilfe der Fernsehthermographie. Ann CIRP 22:3–4

    Google Scholar 

  45. Barrow G (1973) A review of experimental and theoretical techniques for assessing cutting temperatures. Ann CIRP 19:551–557

    Google Scholar 

  46. Kottenstette JP (1986) Measuring tool-chip interface temperatures. J Eng Ind 108:101–104

    Article  Google Scholar 

  47. Le Calvez C (1995) Etude des Aspects Thermiques et Métallurgiques de la Coupe Orthogonale d’un Acier au Carbone (in French). Ph.D. thesis, Ecole Nationale Superieure d’Arts et Mètiers, Paris

    Google Scholar 

  48. Ueda T, Hosokawa A, Yamamoto A (1985) Studies on temperature of abrasive grains in grinding-application of infrared radiation pyrometer. J Eng Ind 107:127–133

    Article  Google Scholar 

  49. Herchang A, Yang WJ (1998) Heat transfer and tool life of metal cutting tools in turning. Int J Heat Mass Transf 41:613–623

    Article  Google Scholar 

  50. Vernaza-Pena KM, Mason JJ, Li M (2002) Experimental study of the temperature field generated orthogonal machining of an aluminium alloy. Exp Mech 42:221–229

    Article  Google Scholar 

  51. Zehnder AT (2002) Plasticity induced heating in the fracture and cutting of metals. In: Aliabadi MH (ed) Thermo mechanical fatigue and fracture. WIT Press, pp 209–244

    Google Scholar 

  52. M’Saoubi R, Le Calvez C, Changeux B, Lebrun JL (2002) Thermal and microstructural analysis of orthogonal cutting of low alloyed carbon steel using an infrared-charge-coupled device camera technique. Proc Inst Mech Eng Part B: J Eng Manuf 216:153–165

    Article  Google Scholar 

  53. Outeiro JC (1996) Behaviour of the AISI 316L steel in orthogonal cutting (in Portuguese). M.Sc., thesis, University of Coimbra, Coimbra

    Google Scholar 

  54. Outeiro JC, Pina JC, M’Saoubi R, Pusavec F, Jawahir IS (2008) Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Ann—Manuf Technol 57(1):77–80

    Article  Google Scholar 

  55. M’Saoubi R (1998) Aspects Thermiques et Microstructuraux de la Coupe. Application à la Coupe Othogonale des Aciers Austénitiques (in French). Ph.D., Ecole Nationale Superieure d’Arts et Mètiers, Paris

    Google Scholar 

  56. Holman JP (2012) Experimental methods for engineers, 8th edn. McGraw-Hill, New York

    Google Scholar 

  57. Shaw MC (1984) Metal cutting principles. Oxford Science Publications, Oxford

    Google Scholar 

  58. Komanduri R, Hou ZB (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34(10):653–682

    Article  Google Scholar 

  59. Oxley PLB (1981) A mechanics of machining approach to assessing machinability, pp 279–287

    Google Scholar 

  60. Stenphenson DA, Agapiou JS (1996) Metal cutting theory and practice. Marcel Dekker

    Google Scholar 

  61. Pollock D (1991) Thermocouples: theory and properties. CRC Press

    Google Scholar 

  62. Oxley PLB (1989) Mechanics of machining: an analytical approach to assessing machinability. Wiley, New York

    Google Scholar 

  63. Leshock CE, Shin YC (1997) Investigation on cutting temperature in turning by a tool-work thermocouple technique. J Manuf Sci Eng 119:502–508

    Article  Google Scholar 

  64. El-Wardany TI, Mohammed E, Elbestawi MA (1996) Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. Int J Mach Tools Manuf 36:611–634

    Article  Google Scholar 

  65. Outeiro JC (2002) Application of recent metal cutting approaches to the study of the machining residual stresses (in Portuguese). Ph.D., thesis, University of Coimbra, Coimbra

    Google Scholar 

  66. Attia MH, Kops L (1986) Distortion in thermal field around inserted thermocouples in experimental interfacial studies. J Eng Ind 108:241–246

    Article  Google Scholar 

  67. Lazoglu I et al (2017) Thermal analysis in Ti–6Al–4V drilling. CIRP Ann 66(1):105–108

    Article  Google Scholar 

  68. Mills B, Wakeman DW, Aboukhashaha A (1980) A new technique for determining the temperature distribution in high speed steel cutting tools using scanning electron microscopy. Ann CIRP 29:73–77

    Article  Google Scholar 

  69. Smart EF, Trent EM (1975) Temperature distribution in tools used for cutting iron, titanium and nickel. Int J Prod Res 13:265–290

    Article  Google Scholar 

  70. Wright PK, Trent EM (1973) Metallurgical methods of determining temperature gradients in cutting tools. J Iron Steel Inst 211:364–368

    Google Scholar 

  71. Lo Castro S et al (1994) Cutting temperatures evolution in ceramics tools: experimental tests, numerical analysis and SEM observations. Ann CIRP 43:73–76

    Article  Google Scholar 

  72. Kato S, Yamaguchi Y, Watanabe Y, Hiraiwa Y (1976) Measrement of temperature distribution within tool using powders of constant melting point. J Eng Ind 98:607–613

    Article  Google Scholar 

  73. Dearnley PA (1983) New technique for determining temperature distribution in cemented carbide cutting tool. Met Technol 10:205–210

    Article  Google Scholar 

  74. Nordgren A, Chandrasekaran H (1995) Measurement of cutting tool temperature using binder phase transformation in cemented carbide tools. Swedish Institute for Metals Research, Stockholm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor P. Astakhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Astakhov, V.P., Outeiro, J. (2019). Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling. In: Davim, J. (eds) Measurement in Machining and Tribology. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-03822-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03822-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03821-2

  • Online ISBN: 978-3-030-03822-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics