Skip to main content

Short-Pulse Laser-Driven Strong Shock Waves

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XIV

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 118))

  • 675 Accesses

Abstract

Warm Dense Matter (WDM) or the High Energy Density (HED) states are useful for instance, to describe properties in giant planets. They are usually achieved in laboratory conditions by using high energy (hundreds of J) and long duration (ns) lasers. An alternative for creating matter in extreme states is described in this chapter. It relies on the formation of strong shocks driven by highly energetic electrons generated by low-energy short-pulse duration laser interacting with the solid target. Such approach opens new pathways in studies and benchmarking of matter in extreme conditions, including study of Equation of State (EOS), structural dynamics on smaller installations, which are easier accessible for researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  2. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798 (2001)

    Article  ADS  Google Scholar 

  3. R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Phys. Rev. Lett. 98, 155001 (2007)

    Article  ADS  Google Scholar 

  4. L.J. Perkins, R. Betti, K.N. LaFortune, W.H. Williams, Phys. Rev. Lett. 103, 045004 (2009)

    Article  ADS  Google Scholar 

  5. D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, O. Klimo, M. Koenig, C. Labaune, X. Ribeyre, C. Rousseaux, G. Schurtz, W. Theobald, V.T. Tikhonchuk, Nucl. Fusion 54, 054009 (2014)

    Article  ADS  Google Scholar 

  6. D. Batani, L. Antonelli, S. Atzeni, J. Badziak, F. Baffigi, T. Chodukowski, F. Consoli, G. Cristoforetti, R. De Angelis, R. Dudzak, G. Folpini, L. Giuffrida, L.A. Gizzi, Z. Kalinowska, P. Koester, E. Krousky, M. Krus, L. Labate, T. Levato, Y. Maheut, G. Malka, D. Margarone, A. Marocchino, J. Nejdl, Ph Nicolai, T. O’Dell, T. Pisarczyk, O. Renner, Y.J. Rhee, X. Ribeyre, M. Richetta, M. Rosinski, M. Sawicka, A. Schiavi, J. Skala, M. Smid, Ch. Spindloe, J. Ullschmied, A. Velyhan, T. Vinci, Phys. Plasmas 21, 032710 (2014)

    Article  ADS  Google Scholar 

  7. J. Lindl, Phys. Plasmas 2(11), 3933 (1995)

    Article  ADS  Google Scholar 

  8. Ya. Zeldovich, YuP Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967)

    Book  Google Scholar 

  9. G. Taylor, Proc. R. Soc. A 201, 159–174 (1950)

    ADS  Google Scholar 

  10. E. de Posada et al., J. Phys: Conf. Ser. 274, 012078 (2011)

    Google Scholar 

  11. J.L. Giuliani Jr., M. Mulbrandon, E. Hyman, Phys. Fluids B 1, 1463 (1989)

    Article  ADS  Google Scholar 

  12. J.J. MacFarlane, G.A. Moses, R.R. Peterson, Phys. Fluids B 1, 635 (1989)

    Article  ADS  Google Scholar 

  13. Y.T. Li, J. Zhang, H. Teng, K. Li, X.Y. Peng, Z. Jin, X. Lu, Z.Y. Zheng, Q.Z. Yu, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 67, 056403 (2003)

    Article  ADS  Google Scholar 

  14. D.R. Farley, K. Shigemori, H. Azechi, Laser Part. Beams 23(4), 513 (2005)

    Article  ADS  Google Scholar 

  15. M.J. Edwards, A.J. MacKinnon, J. Zweiback, K. Shigemori, D. Ryutov, A.M. Rubenchik, K.A. Keilty, E. Liang, B.A. Remington, T. Ditmire, Phys. Rev. Lett. 87, 085004 (2001)

    Article  ADS  Google Scholar 

  16. K.S. Budil et al., Astrophys. J. Suppl. Ser. 127, 262 (2000)

    Article  ADS  Google Scholar 

  17. K. Jakubowska, D. Batani et al., EPL 119, 35001 (2017)

    Article  ADS  Google Scholar 

  18. J.J. Santos et al., Phys. Rev. Lett. 89, 025001 (2002)

    Article  ADS  Google Scholar 

  19. M. Manclossi et al., Phys. Rev. Lett. 96, 125002 (2006)

    Article  ADS  Google Scholar 

  20. M. Koenig et al., Phys. Rev. E 50, R3314 (1994)

    Article  ADS  Google Scholar 

  21. D. Batani et al., Plasma Phys. Control. Fusion 41, 93 (1999)

    Article  ADS  Google Scholar 

  22. A. Benuzzi et al., Phys. Plasmas 5, 2410 (1998)

    Article  ADS  Google Scholar 

  23. F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, M.E. Glinsky, B.A. Hammel, P. Lee, P.A. Norreys, M. Tatarakis, Phys. Plasmas 4, 447 (1997)

    Article  ADS  Google Scholar 

  24. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, J. Johnson, M.D. Perry, E.M. Campbell, Phys. Rev. Lett. 85(14), 2945–2948 (2000)

    Article  ADS  Google Scholar 

  25. D. Batani, M. Koenig, S. Baton, F. Perez, L.A. Gizzi, P. Koester, L. Labate, J. Honrubia, L. Antonelli, A. Morace, L. Volpe, J. Santos, G. Schurtz, S. Hulin, X. Ribeyre, C. Fourment, P. Nicolai, B. Vauzour, L. Gremillet, W. Nazarov, J. Pasley, M. Richetta, K. Lancaster, Ch. Spindloe, M. Tolley, D. Neely, M. Kozlova, J. Nejdl, B. Rus, J. Wolowski, J. Badziak, F. Dorchies, Plasma Phys. Control. Fusion 53, 124041 (2011)

    Article  ADS  Google Scholar 

  26. P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, M. Allen, D.F. Price, H. Ruhl, P.T. Springer, R. Stephens, Phys. Rev. Lett. 91, 125004 (2003)

    Article  ADS  Google Scholar 

  27. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, R.J. Mason, Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  28. R.R. Freeman, D. Batani, S. Baton, M. Key, R. Stephens, Fusion science & technology (FS&T). Fast Ignition Special Issue 49(3), 297 (2006)

    Google Scholar 

  29. D. Batani, Nukleonika 56(2), 99–106 (2011)

    Google Scholar 

  30. P. Norreys, D. Batani, S. Baton, F. Beg, R. Kodama, Ph Nilson, P. Patel, F. Perez, J.J. Santos, R. Scott, V.T. Tikhonchuk, M. Wei, J. Zhang, Fast electron energy transport in solid density and compressed plasma. Nucl. Fusion 54, 054004 (2014)

    Article  ADS  Google Scholar 

  31. J. Breil et al., J. Comp. Phys. 224, 785 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. P.-H. Maire et al., SIAM JSC 29, 1781 (2007)

    Google Scholar 

  33. L.V. Spencer, Natl. Bur. Std. (U.S.) Monograph 1 (1959)

    Google Scholar 

  34. L. Volpe et al., Phys. Plasmas 20, 013104 (2013)

    Article  ADS  Google Scholar 

  35. A.R. Bell, J.R. Davies, S. Guerin, H. Ruhl, Plasma Phys. Control. Fusion 39, 653 (1997)

    Article  ADS  Google Scholar 

  36. F. Pisani, A. Antonicci, A. Bernardinello, D. Batani, E. Martinolli, M. Koenig, L. Gremillet, F. Amiranoff, S. Baton, T. Hall, D. Scott, P. Norreys, A. Djaoui, C. Rousseaux, P. Fews, H. Bandulet, H. Pepin, Phy. Rev. E Rapid Commun. 62(5), R5927–R5930 (2000)

    Article  Google Scholar 

  37. D. Batani, A. Antonicci, F. Pisani, T.A. Hall, D. Scott, F. Amiranoff, M. Koenig, L. Gremillet, S. Baton, E. Martinolli, C. Rousseaux, W. Nazarov, Phys. Rev. E 65, 066409 (2002)

    Article  ADS  Google Scholar 

  38. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

  39. V. Gann et al., in Proceedings of EPAC 2004, Lucerne, Switzerland (2004)

    Google Scholar 

  40. D. Batani et al., EPL 114, 65001 (2016)

    Article  ADS  Google Scholar 

  41. R. Teyssier et al., Astrophys. J. Suppl. Ser. 127, 503 (2000)

    Article  ADS  Google Scholar 

  42. D. Batani et al., Phys. Rev. E 63, 046410 (2001)

    Article  ADS  Google Scholar 

  43. R. Chevalier et al., ApJ 359, 463 (1990)

    Article  ADS  Google Scholar 

  44. T. Grover, J. Hardy, ApJ 143, 48 (1966)

    Article  ADS  Google Scholar 

  45. T. Hall et al., Phys. Rev. E 55, R6356 (1997)

    Article  ADS  Google Scholar 

  46. D.G. Hicks et al., Phys. Rev. Lett. 91, 035502 (2003)

    Article  ADS  Google Scholar 

  47. G. Huser et al., Phys. Plasmas 12, 060701 (2005)

    Article  ADS  Google Scholar 

  48. J.H. Eggert et al., Nat. Phys. 6, 40 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Jakubowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakubowska, K. (2018). Short-Pulse Laser-Driven Strong Shock Waves. In: Yamanouchi, K., Martin, P., Sentis, M., Ruxin, L., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XIV. Springer Series in Chemical Physics(), vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-03786-4_15

Download citation

Publish with us

Policies and ethics