Skip to main content

Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging

  • Chapter
  • First Online:
Imaging in Pediatric Oncology

Part of the book series: Pediatric Oncology ((PEDIATRICO))

  • 862 Accesses

Abstract

This chapter sets out to illustrate potential errors made in the imaging of a child with a malignancy. Pitfalls range from selecting an incorrect modality or using suboptimal protocols to incorrect interpretation of abnormalities. A common mistake with children’s tumours is performing a non-contrast CT as a preliminary evaluation. Due to a paucity of mediastinal and retroperitoneal fat in young patients, non-contrast CT of the chest and abdomen is seldom if ever useful and should be avoided in the setting of a potential new tumour. If CT, rather than MRI, is the optimal test, then only post-intravenous contrast-enhanced CT images should be performed. Multiphase scanning is not necessary bearing in mind that all superficial, accessible or abdominal mass lesions should be evaluated with ultrasound initially, including a Doppler vascular assessment. Most paediatric tumours are large at presentation and easy to identify—the correct differential diagnosis is entirely dependent on the age of the child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Cancer Intelligence Network. National registry of childhood tumours progress report, 2012. Oxford: NRCT; 2013.

    Google Scholar 

  2. Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res. 2010;174(6):840–50.

    Article  CAS  Google Scholar 

  3. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  Google Scholar 

  4. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J. 2013;346:f2360.

    Article  Google Scholar 

  5. Andronikou S. Letting go of what we believe about radiation and the risk of cancer in children. Pediatr Radiol. 2017;47(1):113–5.

    Article  Google Scholar 

  6. Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol. 2001;176(2):289–96.

    Article  CAS  Google Scholar 

  7. Schmidt MH, Marshall J, Downie J, Hadskis MR. Pediatric magnetic resonance research and the minimal-risk standard. IRB. 2011;33(5):1.

    PubMed  Google Scholar 

  8. Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM. Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. Am J Neuroradiol. 2015;36(10):1859–65.

    Article  CAS  Google Scholar 

  9. Jacob J, Deganello A, Sellars ME, Hadzic N, Sidhu PS. Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med. 2013;34(6):529–40.

    Article  CAS  Google Scholar 

  10. Nelson TR. Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol. 2014;11(3):292–9.

    Article  Google Scholar 

  11. http://www.eurosafeimaging.org/wp/wp-content/uploads/2014/02/European-Guidelines-on-DRLs-for-Paediatric-Imaging_Revised_18-July-2016_clean.pdf. Accessed 26 Mar 2017.

  12. Federico SM, Brady SL, Pappo A, Wu J, Mao S, McPherson VJ, Young A, Furman WL, Kaufman R, Kaste S. The role of chest computed tomography (CT) as a surveillance tool in children with high‐risk neuroblastoma. Pediatr Blood Cancer. 2015;62(6):976–81.

    Article  Google Scholar 

  13. McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow‐up. Pediatr Blood Cancer. 2014;61(1):3–6.

    Article  Google Scholar 

  14. Voss S, Chen L, Constine LS, et al. Surveillance CT and detection of relapse in intermediate-and advanced-stage pediatric Hodgkins lymphoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2635–40.

    Google Scholar 

  15. Callahan MJ, Poznauskis L, Zurakowski D, Taylor GA. Nonionic iodinated intravenous contrast material–related reactions: incidence in large urban children’s hospital—retrospective analysis of data in 12 494 patients. Radiology. 2009;250(3):674–81.

    Article  Google Scholar 

  16. Dillman JR, Strouse PJ, Ellis JH, Cohan RH, Jan SC. Incidence and severity of acute allergic-like reactions to iv nonionic iodinated contrast material in children. Am J Roentgenol. 2007;188(6):1643–7.

    Article  Google Scholar 

  17. McHugh K, Disini L. Commentary: for the children’s sake, avoid non-contrast CT. Cancer Imaging. 2011;11:16–8.

    Article  Google Scholar 

  18. Scialpi M, Schiavone R, D’ANDREA AL, Palumbo I, Magli M, Gravante S, Falcone G, De Filippi C, Palumbo B. Single-phase whole-body 64-MDCT split-bolus protocol for pediatric oncology: diagnostic efficacy and dose radiation. Anticancer Res. 2015;35(5):3041–8.

    PubMed  Google Scholar 

  19. Tomà P. Monophasic computed tomography for pediatric oncology using a split-bolus protocol: an unnecessary complication? Pediatr Radiol. 2017;47(3):366.

    Article  Google Scholar 

  20. Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014;29(10):1927–37.

    Article  Google Scholar 

  21. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.

    Article  Google Scholar 

  22. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR. Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51(7):447–53.

    Article  CAS  Google Scholar 

  23. Solanki KK, Bomanji JB, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:51321.

    Google Scholar 

  24. Weiss AR, Lyden ER, Anderson JR, Hawkins DS, Spunt SL, Walterhouse DO, Wolden SL, Parham DM, Rodeberg DA, Kao SC, Womer RB. Histologic and clinical characteristics can guide staging evaluations for children and adolescents with rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol. 2013;31(26):3226–32.

    Article  Google Scholar 

  25. Gauguet JM, Pace‐Emerson T, Grant FD, Shusterman S, DuBois SG, Frazier AL, Voss SD. Evaluation of the utility of 99mTc‐MDP bone scintigraphy versus MIBG scintigraphy and cross‐sectional imaging for staging patients with neuroblastoma. Pediatr Blood Cancer 2017;64(11).

    Google Scholar 

  26. Lee Chong A, Grant RM, Ahmed BA, Thomas KE, Connolly BL, Greenberg M. Imaging in pediatric patients: time to think again about surveillance. Pediatr Blood Cancer. 2010;55(3):407–13.

    Article  Google Scholar 

  27. Gruden JF, Ouanounou S, Tigges S, Norris SD, Klausner TS. Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol. 2002;179(1):149–57.

    Article  Google Scholar 

  28. Silva CT, Amaral JG, Moineddin R, Doda W, Babyn PS. CT characteristics of lung nodules present at diagnosis of extrapulmonary malignancy in children. Am J Roentgenol. 2010;194(3):772–8.

    Article  Google Scholar 

  29. McCarville MB, Lederman HM, Santana VM, Daw NC, Shochat SJ, Li CS, Kaufman RA. Distinguishing benign from malignant pulmonary nodules with helical chest CT in children with malignant solid tumors. Radiology. 2006;239(2):514–20.

    Article  Google Scholar 

  30. Sams CM, Voss SD. Imaging of the pediatric thymus and thymic disorders. In: Pediatric chest imaging. Berlin, Heidelberg: Springer; 2014. p. 327–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Barber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barber, J., McHugh, K. (2019). Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging. In: Voss, S., McHugh, K. (eds) Imaging in Pediatric Oncology. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-03777-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03777-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03776-5

  • Online ISBN: 978-3-030-03777-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics