Skip to main content

Radiation Treatment Planning in Pediatric Oncology

  • Chapter
  • First Online:
Imaging in Pediatric Oncology

Part of the book series: Pediatric Oncology ((PEDIATRICO))

  • 855 Accesses

Abstract

Radiotherapy (RT) plays an important role in the multimodality treatment of a number of pediatric tumors, both in the curative and palliative settings. In general, treatment paradigms in pediatric oncology look to risk-stratify and response-adapt treatment for patients, with the overarching tenet of delivering the minimum treatment required for cure. This paradigm looks to minimize long-term sequelae in those treated at young ages, the majority of whom will be long-term survivors. The late consequences of radiotherapy, dependent on the treated site, can include cognitive, endocrine, growth, vascular, and fertility effects and the induction of second malignancy.

In recent decades, RT treatment delivery techniques have become increasingly sophisticated. It is now possible to deliver complex treatments where the prescribed dose is sculpted to the target, and normal tissues are maximally spared moderate to high doses. This is achieved through increased accuracy and precision in target definition and the ability to better visualize the target during the course of treatment, thereby reducing geometric uncertainties in treatment delivery. Imaging plays an integral role in the ability to deliver such accurate and precise RT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olch AJ. Pediatric radiotherapy planning and treatment. London: CRC Press; 2013.

    Book  Google Scholar 

  2. Jones D. ICRU report 50—prescribing, recording and reporting photon beam therapy. Med Phys. 1994;21(6):833–4.

    Article  Google Scholar 

  3. Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JC, et al. Report 62. J Int Comm Radiat Units Meas. 1999;32(1):1–52.

    Google Scholar 

  4. ICRU. Report 83. J Int Comm Radiat Units Meas. 2010;10(1):1–106.

    Google Scholar 

  5. International Commission on Radiation Units and Measurements (ICRU). Report 62. Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda, MD: ICRU; 1999.

    Google Scholar 

  6. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.

    Article  Google Scholar 

  7. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  Google Scholar 

  8. Gaze MN, Boterberg T, Dieckmann K, Hormann M, Gains JE, Sullivan KP, et al. Results of a quality assurance review of external beam radiation therapy in the International Society of Paediatric Oncology (Europe) Neuroblastoma Group’s High-risk Neuroblastoma Trial: a SIOPEN study. Int J Radiat Oncol Biol Phys. 2013;85(1):170–4.

    Article  Google Scholar 

  9. Chen AB, Killoran J, Kim H, Mamon H. Treatment planning for resected abdominal tumors: differences in organ position between diagnostic and radiation-planning computed tomography scans. Int J Radiat Oncol Biol Phys. 2005;63(5):1613–20.

    Article  Google Scholar 

  10. Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging–linac program. Semin Radiat Oncol. 2014;24(3):203–6.

    Article  Google Scholar 

  11. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24(3):196–9.

    Article  Google Scholar 

  12. Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging–linac system. Semin Radiat Oncol. 2014;24(3):207–9.

    Article  Google Scholar 

  13. Fallone BG. The rotating biplanar linac–magnetic resonance imaging system. Semin Radiat Oncol. 2014;24(3):200–2.

    Article  Google Scholar 

  14. Chen GT, Kung JH, Beaudette KP. Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol. 2004;14(1):19–26.

    Article  Google Scholar 

  15. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48(1):45–62.

    Article  CAS  Google Scholar 

  16. Rietzel E, Pan T, Chen GT. Four-dimensional computed tomography: image formation and clinical protocol. Med Phys. 2005;32(4):874–89.

    Article  Google Scholar 

  17. Pai Panandiker AS, Sharma S, Naik MH, Wu S, Hua C, Beltran C, et al. Novel assessment of renal motion in children as measured via four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2012;82(5):1771–6.

    Article  Google Scholar 

  18. Uh J, Krasin MJ, Li Y, Li X, Tinkle C, Lucas JT Jr, et al. Quantification of pediatric abdominal organ motion with a 4-dimensional magnetic resonance imaging method. Int J Radiat Oncol Biol Phys. 2017;99(1):227–37.

    Article  Google Scholar 

  19. Huijskens SC, van Dijk IW, Visser J, Rasch CR, Alderliesten T, Bel A. Magnitude and variability of respiratory-induced diaphragm motion in children during image-guided radiotherapy. Radiother Oncol. 2017;123:263.

    Article  Google Scholar 

  20. Huijskens SC, van Dijk IWEM, de Jong R, Visser J, Fajardo RD, Ronckers CM, et al. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: a multicenter study. Radiother Oncol. 2015;117(3):425–31.

    Article  Google Scholar 

  21. van Dijk IW, Huijskens SC, de Jong R, Visser J, Fajardo RD, Rasch CR, et al. Interfractional renal and diaphragmatic position variation during radiotherapy in children and adults: is there a difference? Acta oncologica. Stockholm: Sweden; 2017. p. 1–7.

    Google Scholar 

  22. Nazmy MS, Khafaga Y, Mousa A, Khalil E. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma. Radiother Oncol. 2012;102(3):388–92.

    Article  Google Scholar 

  23. Kannan S, Teo BK, Solberg T, Hill-Kayser C. Organ motion in pediatric high-risk neuroblastoma patients using four-dimensional computed tomography. J Appl Clin Med Phys. 2017;18(1):107–14.

    PubMed  Google Scholar 

  24. Beltran C, Pai Panandiker AS, Krasin MJ, Merchant TE. Daily image-guided localization for neuroblastoma. J Appl Clin Med Phys. 2010;11(4):3388.

    Article  Google Scholar 

  25. Bhandare N, Jackson A, Eisbruch A, Pan CC, Flickinger JC, Antonelli P, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys. 2010;76(3):S50–S7.

    Article  Google Scholar 

  26. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S108–S15.

    Article  Google Scholar 

  27. Deasy JO, Moiseenko V, Marks L, Chao KSC, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3):S58–63.

    Article  Google Scholar 

  28. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3):S77–85.

    Article  Google Scholar 

  29. Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76(3):S101–S7.

    Article  Google Scholar 

  30. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3):S42–S9.

    Article  Google Scholar 

  31. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3):S20–S7.

    Article  Google Scholar 

  32. Marks LB, Bentzen SM, Deasy JO, Kong F-M, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76(3):S70–S6.

    Article  Google Scholar 

  33. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.

    Article  Google Scholar 

  34. Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S36–41.

    Article  Google Scholar 

  35. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S123–S9.

    Article  Google Scholar 

  36. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3):S94–S100.

    Article  Google Scholar 

  37. Rancati T, Schwarz M, Allen AM, Feng F, Popovtzer A, Mittal B, et al. Radiation dose-volume effects in the larynx and pharynx. Int J Radiat Oncol Biol Phys. 2010;76(3):S64–S9.

    Article  Google Scholar 

  38. Roach M III, Nam J, Gagliardi G, El Naqa I, Deasy JO, Marks LB. Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys. 2010;76(3):S130–S4.

    Article  Google Scholar 

  39. Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76(3):S116–S22.

    Article  Google Scholar 

  40. Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76(3):S86–93.

    Article  Google Scholar 

  41. PENTEC. Available from: https://www.pentecradiation.org/.

  42. Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.

    Article  Google Scholar 

  43. De Los Santos J, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys. 2013;87(1):33–45.

    Article  Google Scholar 

  44. Beltran C, Pegram A, Merchant TE. Dosimetric consequences of rotational errors in radiation therapy of pediatric brain tumor patients. Radiother Oncol. 2012;102(2):206–9.

    Article  Google Scholar 

  45. Beltran C, Krasin MJ, Merchant TE. Inter- and intrafractional positional uncertainties in pediatric radiotherapy patients with brain and head and neck tumors. Int J Radiat Oncol Biol Phys. 2011;79(4):1266–74.

    Article  Google Scholar 

  46. Beltran C, Merchant TE. Dependence of intrafraction motion on fraction duration for pediatric patients with brain tumors. J Appl Clin Med Phys. 2011;12(4):3609.

    Article  Google Scholar 

  47. Beltran C, Sharma S, Merchant TE. Role of adaptive radiation therapy for pediatric patients with diffuse pontine glioma. J Appl Clin Med Phys. 2011;12(2):3421.

    Article  Google Scholar 

  48. Beltran C, Naik M, Merchant TE. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol. 2010;97(3):399–403.

    Article  Google Scholar 

  49. Beltran C, Naik M, Merchant TE. Dosimetric effect of setup motion and target volume margin reduction in pediatric ependymoma. Radiother Oncol. 2010;96(2):216–22.

    Article  Google Scholar 

  50. Beltran C, Trussell J, Merchant TE. Dosimetric impact of intrafractional patient motion in pediatric brain tumor patients. Med Dosim. 2010;35(1):43–8.

    Article  Google Scholar 

  51. Altunbas C, Hankinson TC, Miften M, Tello T, Plimpton SR, Stuhr K, et al. Rotational setup errors in pediatric stereotactic radiation therapy. Pract Radiat Oncol. 2013;3(3):194–8.

    Article  Google Scholar 

  52. Beltran C, Lukose R, Gangadharan B, Bani-Hashemi A, Faddegon BA. Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys. 2009;10(3):3023.

    Article  Google Scholar 

  53. Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med Phys. 2005;32(4):1176–86.

    Article  Google Scholar 

  54. Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.

    Article  CAS  Google Scholar 

  55. Murphy ES, Chao ST, Angelov L, Vogelbaum MA, Barnett G, Jung E, et al. Radiosurgery for pediatric brain tumors. Pediatr Blood Cancer. 2016;63(3):398–405.

    Article  Google Scholar 

  56. Hoffman LM, Plimpton SR, Foreman NK, Stence NV, Hankinson TC, Handler MH, et al. Fractionated stereotactic radiosurgery for recurrent ependymoma in children. J Neurooncol. 2014;116(1):107–11.

    Article  Google Scholar 

  57. Saran F, Baumert BG, Creak AL, Warrington AP, Ashley S, Traish D, et al. Hypofractionated stereotactic radiotherapy in the management of recurrent or residual medulloblastoma/PNET. Pediatr Blood Cancer. 2008;50(3):554–60.

    Article  Google Scholar 

  58. Brown LC, Lester RA, Grams MP, Haddock MG, Olivier KR, Arndt CA, et al. Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma. Sarcoma. 2014;2014:418270.

    Article  Google Scholar 

  59. Yock TI, Tarbell NJ. Technology insight: proton beam radiotherapy for treatment in pediatric brain tumors. Nat Clin Pract Oncol. 2004;1(2):97–103. quiz 1 p following 11.

    Article  Google Scholar 

  60. Alcorn SR, Chen MJ, Claude L, Dieckmann K, Ermoian RP, Ford EC, et al. Practice patterns of photon and proton pediatric image guided radiation treatment: results from an International Pediatric Research consortium. Pract Radiat Oncol. 2014;4(5):336–41.

    Article  Google Scholar 

  61. Peeler CR, Mirkovic D, Titt U, Blanchard P, Gunther JR, Mahajan A, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121(3):395–401.

    Article  CAS  Google Scholar 

  62. Merchant TE. Clinical controversies: proton therapy for pediatric tumors. Semin Radiat Oncol. 2013;23(2):97–108.

    Article  Google Scholar 

  63. National Cancer Research Institute (NCRI). CTRad: identifying opportunities to promote progress in molecular radiotherapy research in the UK, vol. 2016. London: NCRI; 2016.

    Google Scholar 

  64. Phase I/II study of [124I]mIBG PET/CT in neuroblastoma. Available from: https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/phase-iii-study-of-124imibg-petct-in-neuroblastoma/.

  65. LuDo. Available from: http://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-looking-177-lutetium-dotatate-neuroblastoma-children-young-people-ludo.

  66. Trial Evaluating and Comparing Two Intensification Treatment Strategies for Metastatic Neuroblastoma Patients With a Poor Response to Induction Chemotherapy (VERITAS). 2017. Accessed on 1 Oct 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03165292.

  67. O’Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol. 2016;61(8):R90–R137.

    Article  Google Scholar 

  68. Fontanarosa D, van der Meer S, Bamber J, Harris E, O’Shea T, Verhaegen F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol. 2015;60(3):R77–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Mandeville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavan, N.A., Mandeville, H.C. (2019). Radiation Treatment Planning in Pediatric Oncology. In: Voss, S., McHugh, K. (eds) Imaging in Pediatric Oncology. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-03777-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03777-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03776-5

  • Online ISBN: 978-3-030-03777-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics