Skip to main content

Face Alignment Based on K-Means

  • Conference paper
  • First Online:
  • 687 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 891))

Abstract

In order to address the generalization problem when Active Appearance Model (AAM) is applied to unseen subjects and images. In this paper, an accurate face alignment algorithm based on K-means is proposed to tackle the generalization problem of AAM. Firstly, the original AAM is reformulated as a sparsity-regularized problem. Then, for an input facial image, we learn a strong localized shape and appearance prior through exploiting its K-similar patterns to further approximate sparse representation problem. Finally, learning many localized linear face model instead of a global non-linear face model. Through numerical experiments, this approach is shown to outperform some common existing methods on the task of generic face fitting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chrysos, G.G., Antonakos, E., Snape, P., Asthana, A., Zafeiriou, S.: A comprehensive performance evaluation of deformable face tracking “In-the-Wild”. Int. J. Comput. Vision 126(2–4), 198–232 (2018). https://doi.org/10.1007/s11263-017-0999-5

    Article  MathSciNet  Google Scholar 

  2. Chen, J., Chen, Z., Chi, Z., Fu, H.: Facial expression recognition in video with multiple feature fusion. IEEE Trans. Affect. Comput. 9(1), 38–50 (2018). https://doi.org/10.1109/taffc.2016.2593719

    Article  Google Scholar 

  3. Li, H., Ding, H., Huang, D., Wang, Y., Zhao, X., Morvan, J.M., Chen, L.: An efficient multimodal 2D + 3D feature-based approach to automatic facial expression recognition. Comput. Vis. Image Underst. 140, 83–92 (2015). https://doi.org/10.1016/j.cviu.2015.07.005

    Article  Google Scholar 

  4. Jung, H., Lee, S., Yim, J., Park, S., Kim,J.: Joint fine-tuning in deep neural networks for facial expression recognition. In: IEEE ICCV, pp. 2983–2991. Santiago, Chile (2015). https://doi.org/10.1109/ICCV.2015.341

  5. Liu, F., Zeng, D., Zhao, Q., Liu, X.: Joint face alignment and 3D face reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. Lecture Notes in Computer Science, vol 9909, pp. 545–560. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_33

    Chapter  Google Scholar 

  6. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3D face reconstruction with deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, pp. 1503–1512 (2017). https://doi.org/10.1109/cvpr.2017.164

  7. Roth, J., Tong, Y., Liu, X.: Adaptive 3D face reconstruction from unconstrained photo collections. In: IEEE CVPR, 2017. Las Vegas, NV, USA, pp. 2127–2141 (2016).https://doi.org/10.1109/cvpr.2016.455

  8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Underst. 61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004&%23xB7

    Article  Google Scholar 

  9. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).https://doi.org/10.1109/34.927467

    Article  Google Scholar 

  10. Xiong, X., Torre, F.D.L.: Supervised descent method and its applications to face alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539. IEEE, Portland (2013). https://doi.org/10.1109/cvpr.2013.75

  11. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by Explicit Shape Regression. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 177–190. IEEE, Providence (2012). https://doi.org/10.1109/cvpr.2012.6248015

  12. Jin, X., Tan, X.: Face alignment in-the-wild: a survey. Comput. Vis. Image Underst. 162, 1–22 (2017). https://doi.org/10.1016/j.cviu.2017.08.008

    Article  Google Scholar 

  13. Bulat, A., Tzimiropoulos, G.: Two-stage convolutional part heatmap regression for the 1st 3D Face Alignment in the Wild (3DFAW) challenge. In: Hua G., Jégou H. (eds.) Computer Vision – ECCV 2016 Workshops, ECCV 2016. Lecture Notes in Computer Science, vol 9914, pp. 616–624. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_43

    Google Scholar 

  14. Jourabloo, A., Ye, M., Liu, X., Ren, L.: Pose-invariant face alignment with a single CNN. In: ICCV, pp. 3219–3228. IEEE, Venice (2017). https://doi.org/10.1109/iccv.2017.347

  15. Zhu, X., Zhu, L., Liu, X., Shi, H., Li, S.: Face alignment across large poses: a 3D solution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 146–155. IEEE, Las Vegas (2016). https://doi.org/10.1109/cvpr.2016.23

  16. Zhao, X., Shan, S., Chai, X., Chen, X.: Locality-constrained active appearance model. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. Lecture Notes in Computer Science, vol 7724, pp. 636–647. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-37331-2_48

    Chapter  Google Scholar 

  17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002). https://doi.org/10.1109/tpami.2002.1017616

    Article  MATH  Google Scholar 

  18. Coates, A., Ng, A.Y. Learning feature representations with K-Means. In: Montavon, G., Orr, G.B., Müller, KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700, pp. 561–580. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-35289-8_30

    Google Scholar 

  19. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) database. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, p. 0053. IEEE, Washington, DC (2002). https://doi.org/10.1109/AFGR.2002.1004130

  20. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J. Min, J., Worek, W.: Overview of the face recognition grand challenge. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), (CVPR), pp. 947–954. IEEE, San Diego (2005). https://doi.org/10.1109/cvpr.2005.268

  21. Phillips, P.J., Wechsler, H., Huang, J., Raussa, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998). https://doi.org/10.1016/s0262-8856(97)00070-x

    Article  Google Scholar 

  22. Gao, W., Cao, B., Shan, S.: The CAS-PEAL large-scale chinese face database and baseline evaluations. IEEE Trans. Syst., Man, Cybern. Part A Syst. Hum. 38(1), 149–161 (2008).https://doi.org/10.1109/tsmca.2007.909557

    Article  Google Scholar 

  23. Kumar, N., Berg, A., Belhumeur, P., Nayar, S.K.: Attribute and simile classifiers for face verification. In: Proceedings/ IEEE International Conference on Computer Vision, pp. 365–372. IEEE, Kyoto (2009).https://doi.org/10.1109/iccv.2009.5459250

  24. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Panticac, M.: 300 Faces In-The-Wild Challenge: database and results * **. Image Vis. Comput. 47, 3–18 (2016). https://doi.org/10.1016/j.imavis.2016.01.002

    Article  Google Scholar 

  25. Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. ACM Trans. Graph. 32(4), 1–10 (2013). https://doi.org/10.1145/2461912.2462012

    Article  MATH  Google Scholar 

  26. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 545–552 (2011). https://doi.org/10.1109/cvpr.2011.599560

    Article  Google Scholar 

  27. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: 2013 IEEE International Conference on Computer Vision, pp. 1513–1520. IEEE, Sydney (2013). https://doi.org/10.1109/iccv.2013.191

  28. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692. IEEE, Columbus (2014). https://doi.org/10.1109/cvpr.2014.218

  29. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE, Providence (2012). https://doi.org/10.1109/cvpr.2012.6248014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Yuan, Q. (2019). Face Alignment Based on K-Means. In: Krömer, P., Zhang, H., Liang, Y., Pan, JS. (eds) Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2018. Advances in Intelligent Systems and Computing, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-03766-6_81

Download citation

Publish with us

Policies and ethics