Skip to main content

Bioprospecting for Fungal-Endophyte-Derived Natural Products for Drug Discovery

  • Chapter
  • First Online:
Advances in Endophytic Fungal Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal endophytes are epitomes of various secondary metabolites and natural products, which have a place in the medical and industrial arenas. They comprise components of plant microecosystems that dwell asymptomatically and symbiotically within plant tissue systems. Certain contemporaneous endophytes and their specific hosts have established a unique correlation that can expressively control plant metabolites and affect the physicochemical properties of medicinal-plant-based crude drugs. Currently, shifting lifestyles have led to a rise in maladies like pulmonary disease, asthma, cardiovascular diseases, and cancer. Though several new medicines have been introduced to the market, the development of resistance to these drugs has become increasingly evident, especially in patients suffering from chronic disease. Synthetic drug therapy has proven to be uncertain, so there is an overall need to develop new protective agents from microorganisms that are highly effective with minimal side effects. Natural products thus have always been a choice for the isolation of novel bioactive molecules for diverse therapeutic applications. It has been determined that nearly 20, 00,000 natural products are of microbial origin. This chapter will thus provide an insight into the novel aspects of some natural products of fungal endophytic origin that may have significant therapeutic potential in disease control and eventually facilitate product discovery with a focus on understanding the interface between endophytic fungi and therapeutic plants. Such an understanding can lead to a more widespread use of superior plant-based drugs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96(1):34–42

    Article  PubMed  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Aly A, Debbab A, Proksch P (2013) Fungal endophytes—secret producers of bioactive plant metabolites. Pharmazie 68(7):499–505

    CAS  PubMed  Google Scholar 

  • Arora J, Ramawat K (2017) An introduction to endophytes. In: Endophytes: biology and biotechnology. Springer, pp 1–23

    Google Scholar 

  • Bacon CW, White J (2000) Microbial endophytes. CRC Press, Boca Raton

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashyal B, Li J, Strobel G, Hess W, Sidhu R (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 72:33–42

    Google Scholar 

  • Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58(3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Caboni P, Ntalli N, Bueno C, Alche L (2012) Isolation and chemical characterization of components with biological activity extracted from Azadirachta Indica and Melia Azedarach. In: Emerging trends in dietary components for preventing and combating disease. ACS Publications, pp 51–77

    Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39(5):425–430

    Article  CAS  PubMed  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthi B, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33(2):259

    Article  CAS  PubMed  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan E (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540

    Article  CAS  PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57(1):45–83

    Article  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    Article  PubMed  PubMed Central  Google Scholar 

  • Elumalai E, Chandrasekaran N, Thirumalai T, Sivakumar C, Therasa SV, David E (2009) Achyranthes aspera leaf extracts inhibited fungal growth. Int J Pharm Tech Res 1(4):1576–1579

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42(2):360–368

    Article  PubMed  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257

    Article  CAS  Google Scholar 

  • Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63(8):460

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2008) A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography. Chin J Chromatogr 26(1):50–55

    CAS  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25(4):627–632

    Article  CAS  Google Scholar 

  • Helander M, Ahlholm J, Sieber T, Hinneri S, Saikkonen K (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175(3):547–553

    Article  CAS  PubMed  Google Scholar 

  • Huang W-Y, Cai Y-Z, Hyde KD, Corke H, Sun M (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23(9):1253–1263

    Article  CAS  Google Scholar 

  • Kaul S, Sharma T, Dhar MK (2016) “Omics” Tools for Better Understanding the Plant–Endophyte Interactions. Front Plant Sci 7:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9(4):358–363

    Article  PubMed  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121

    Article  CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J, Harrison PF (1998) Antimicrobial resistance: issues and options. National Academies Press, Washington, DC

    Google Scholar 

  • Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142(1):38–45

    Article  PubMed  Google Scholar 

  • Lingfei L, Anna Y, Zhiwei Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54(3):367–373

    Article  PubMed  CAS  Google Scholar 

  • Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • London DS (2012) Diet as a double-edged sword: the pharmacological properties of food among the Waorani Hunter-Gatherers of Amazonian Ecuador. Arizona State University

    Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37(7):1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Marchart K (2011) Qualitative and quantitative analysis of Chinese medical herbs for the prevention and therapy of acute myocardial infarction and diabetes. Uniwien

    Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. https://doi.org/10.1371/journal.pone.0186234

    Article  CAS  Google Scholar 

  • Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer, Cham, Switzerland, pp 1–35. https://doi.org/10.1007/978-3-319-34106-4_1

    Chapter  Google Scholar 

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5(4):918–970

    Article  CAS  Google Scholar 

  • Omeje EO, Ahomafor JE, Onyekaba TU, Monioro PO, Nneka I, Onyeloni S, Chime C, Eboka JC (2017) Endophytic fungi as alternative and reliable sources for potent anticancer agents. In: Natural products and cancer drug discovery. InTech

    Google Scholar 

  • Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3(12):969–973

    Google Scholar 

  • Palombo EA (2012) Endophytes from Medicinal Plants as Novel Sources of Bioactive Compounds. In: Medicinal plants: biodiversity and drugs. pp 355–411

    Google Scholar 

  • Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221

    Article  CAS  PubMed  Google Scholar 

  • Pandey PK, Singh S, Yadav RNS, Singh AK, Singh MCK (2014) Fungal endophytes: promising tools for pharmaceutical science. Int J Pharm Sci Rev Res 25(2):128–138

    Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Prakash V (2015) Endophytic fungi as resource of bioactive compounds. Int J Pharm Bio Sci 6:887–898

    Google Scholar 

  • Priti V, Ramesha B, Singh S, Ravikanth G, Ganeshaiah K, Suryanarayanan T, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478

    Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Shawl A, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi G (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44(2):203–209

    Article  CAS  Google Scholar 

  • Rodriguez R, White J Jr, Arnold A, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Schiff PL Jr (2002) Opium and its alkaloids. Am J Pharm Educ 66(2):186

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Senthil Kumaran R, Muthumary J, Hur B (2008) Production of Taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8(4):438–446

    Article  CAS  Google Scholar 

  • Shah A, John Dar N, Parvaiz Hassan Q, Ahmad M (2016) Endophytes and Neurodegenerative diseases: a hope in desperation. CNS Neurol Disord Drug Targets 15(10):1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Vesterlund S-R, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47(1):109–118

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G, Lee I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287

    CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3(8):1205–1216

    CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z-L, Chen Y-C, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25(2):295

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang M, Zheng Y, Liu H, Zhang X, Wu S (2015) Isolation and characterzation of endophytic Huperzine A-producing fungi from Phlegmariurus phlegmaria. Microbiology 84(5):701–709

    Article  CAS  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol 1:567–576

    Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to DBT (Govt. of India) Sponsored Bioinformatics Infrastructure Facility (BIF) of Assam University and Delcon’s e-Journal Access Facility.

Conflict of interest: The authors declare that there is no conflict of interests regarding the publication of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Das Talukdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, P., Talukdar, A.D., Choudhury, M.D., Nath, D. (2019). Bioprospecting for Fungal-Endophyte-Derived Natural Products for Drug Discovery. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_3

Download citation

Publish with us

Policies and ethics